DOI QR코드

DOI QR Code

Ex vivo Morphometric Analysis of Coronary Stent using Micro-Computed Tomography

미세단층촬영기법을 이용한 관상동맥 스텐트의 동물 모델 분석

  • Bae, In-Ho (Heart Research Center, Chonnam National University Hospital) ;
  • Koh, Jeong-Tae (Dental Science Research Institute and BK21, School of Dentistry, Chonnam National University) ;
  • Lim, Kyung-Seob (Heart Research Center, Chonnam National University Hospital) ;
  • Park, Dae-Sung (Heart Research Center, Chonnam National University Hospital) ;
  • Kim, Jong-Min (Heart Research Center, Chonnam National University Hospital) ;
  • Jeong, Myung-Ho (Heart Research Center, Chonnam National University Hospital)
  • 배인호 (전남대학교 병원 심장질환치료기술개발특성화연구센터) ;
  • 고정태 (전남대학교 치의학전문대학원) ;
  • 임경섭 (전남대학교 병원 심장질환치료기술개발특성화연구센터) ;
  • 박대성 (전남대학교 병원 심장질환치료기술개발특성화연구센터) ;
  • 김종민 (전남대학교 병원 심장질환치료기술개발특성화연구센터) ;
  • 정명호 (전남대학교 병원 심장질환치료기술개발특성화연구센터)
  • Received : 2012.01.02
  • Accepted : 2012.04.24
  • Published : 2012.04.30

Abstract

Micro-computed tomography (microCT) is an important tool for preclinical vascular imaging, with micron-level resolution. This non-destructive means of imaging allows for rapid collection of 2D and 3D reconstructions to visualize specimens prior to destructive analysis such as pathological analysis. Objectives. The aim of this study was to suggest a method for ex vivo, postmortem examination of stented arterial segments with microCT. And ex vivo evaluation of stents such as bare metal or drug eluting stents on in-stent restenosis (ISR) in rabbit model was performed. The bare metal stent (BMS) and drug eluting stent (DES, paclitaxel) were implanted in the left or right iliac arteries alternatively in eight New Zealand white rabbits. After 4 weeks of post-implantation, the part of iliac arteries surrounding the stent were removed carefully and processed for microCT. Prior to microCT analysis, a contrast medium was loaded to lumen of stents. All samples were subjected to an X-ray source operating at 50 kV and 200 ${\mu}A$ by using a 3D isotropic resolution. The region of interest was traced and measured by CTAN analytical software. Objects being exposed to radiation had different Hounsfield unit each other with values of approximately 1.2 at stent area, 0.12 ~ 0.17 at a contrast medium and 0 ~ 0.06 at outer area of stent. Based on above, further analyses were performed. As a result, the difference of lengths and volumes between expanded stents, which may relate to injury score in pathological analysis, was not different significantly. Moreover, ISR area of BMS was 1.6 times higher than that of DES, indicating that paclitaxel has inhibitory effect on cell proliferation and prevent infiltration of restenosis into lumen of stent. And ISR area of BMS was higher ($1.52{\pm}0.48mm^2$) than that of DES ($0.94{\pm}0.42mm^2$), indicating that paclitaxel has inhibitory effect on cell proliferation and prevent infiltration of restenosis into lumen of stent. Though it was not statistically significant, it showed that the extent of neointema of mid-region of stents was relatively higher than that of anterior and posterior region in parts of BMS as showing cross-sectional 2-D image. suggest that microCT can be utilized as an accessorial tool for pathological analysis.

미세단층촬영기법은 전임상 동물실험 분석시 고해상도의 혈관 영상화를 위한 중요한 수단이다. 이는 조직 분석과 같이 샘플 훼손이 예상되는 분석 작업 이전에 비파괴적인 방법으로 2차원 또는 3차원 이미지 재구성할 수 있는 장점이 있다. 본 연구에서는 생체 이식용 의료기기인 스텐트를 동물모델에서 전임상 분석을 하는데 있어 미세단층촬영기법의 활용방법을 제시하고 금속 스텐트(BMS)와 약물(paclitaxel)이 코팅된 스텐트(DES)의 스텐트 내 재협착정도(ISR)를 토끼 모델을 이용하여 평가하고자 하였다. BMS와 DES를 무작위적으로 토끼의 장골동맥에 식립하고 4주 후에 스텐트가 식립된 주위 혈관을 적출한 다음 스텐트 내강에 조영제를 투여하였다. 미세단층촬영기를 이용하여 50kV/200${\mu}A$의 X-ray 조사량으로 샘플을 스캔하였다. 정량적 분석을 위해 CTAN 소프트웨어를 이용하여 관심영역을 지정하여 정량적 분석을 수행하였다. 피폭 대상에 따라 각기 다른 CT값(Hounsfied Unit)을 획득할 수 있었으며(스텐트 영역; 약 1.2, 조영제 영역; 0.12~0.17, X-ray 비흡수 영역; 0~0.06), 이를 이용하여 2차원, 3차원적 영상을 획득하고 스텐트내 재협착 면적을 산출하였다. 조직병리학적 분석의 염증지수에 해당할 수 있는 확장된 스텐트의 크기를 측정하였을 때 BMS와 DES간의 유의한 차이가 나타나지 않았다. 또한 BMS 그룹의 ISR($1.52{\pm}0.48mm2$)이 DES의 ISR($0.94{\pm}0.42mm2$)에 비해 약 1.6배 높은 것으로 확인되었다. 이는 DES에 코팅된 paclitaxel이 세포 증식을 억제하여 스텐트 내강으로 증식하는 것을 저해하였기 때문으로 판단된다. 2차원적 분석 결과 BMS의 재협착 분포는 스텐트 중간 영역에서 전면부와 후면부에 비해 비교적 높은 것으로 확인되었다. 이러한 연구 결과로 볼 때 미세단층촬영기법은 비파괴적인 방법으로 분석이 가능하며 정량적 분석을 위한 기존의 복잡한 조직병리학적 분석법의 보조적인 수단으로 활용될 수 있을 것이다.

Keywords

References

  1. David Chua SN, Mac Donald BJ. Hashmi MSJ, "Finite-Element Simulation of Stent Expansion," J Mater Process Tech, Vol. 120, No. 1-3, pp.335-340, 2002. https://doi.org/10.1016/S0924-0136(01)01127-X
  2. Vorwerk D, Gunther Rw, "Stent placement in iliac lesions : Thress years of clinical experience with the Wallstent," Cardiovasc Intervent Radiol, Vol. 15, No. 5, pp.285-290, 1992. https://doi.org/10.1007/BF02733952
  3. Long AL, Sapoval MR, Beyssen BM, et al, "Strecker stent implantation in iliacn arteries : patency and predictive factors for long-term success," Radiology, Vol. 19, No. 4, pp.739-744, 1995.
  4. Henry M, Amor M, Ethevenot G, et al, "Palmaz stent placement in iliac and femoropopliteal arteries : primary and secondary patency in 310 patients with 2-4-year follow-up," Radiology, Vol. 197, No. 1, pp.167-174, 1995. https://doi.org/10.1148/radiology.197.1.7568818
  5. Pan S, Liou W, Shih A, et al, "Experimental System for X-ray Cone-Beam Microtomography," Microsc Microanal, Vol. 4, No. 1, pp.56-62, 1998. https://doi.org/10.1017/S1431927698980059
  6. Foerst J, Ball T, Kaplan AV, "Postmortem in situ micro-CT evaluation of coronary stent fracture." Catherter Cardiovasc Interv, Vol. 76, No. 4, pp.527-531.
  7. Nikolov HN, Pelz DM, Lownie SP, et al, "Micro-CT-compatible technique for measuring self-expanding stent force," J Vasc Interv Radiol, Vol. 21, No. 4, pp.562-570.
  8. Heldman AW, Cheng L, Jenkins GM, et al, "Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis," Circulation, Vol. 103, No. 18, pp.2289-95, 2001. https://doi.org/10.1161/01.CIR.103.18.2289
  9. Gabet Y, Kohavi D, Kohler T, et al, "Trabecular bone gradient in rat long bone metaphyses: mathematical modeling and application to morphometric measurements and correction of implant positioning," J Bone Miner Res, Vol. 23, No. 1, pp.48-57, 2008.
  10. De Vos W, Casselman J, Swennen GR, et al, "Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: A systematic review of the literature," Int J Oral Maxillofac Surg, Vol. 38, No. 6, pp.609-625, 2009. https://doi.org/10.1016/j.ijom.2009.02.028
  11. Gershlich A, De Scheerder I, Chevalier B, et al, "Inhibition of restenosis with a paclitaxel-eluting, polymer-free coronary stent: the European evaLUation of pacliTaxel Eluting Stent (ELUTES) trial," Circulation, Vol. 109, No. 4, pp.487-493, 2004. https://doi.org/10.1161/01.CIR.0000109694.58299.A0
  12. Schwartz RS, Huber KC, Murphy JG, et al, "Restenosis and the proportional neointimal response to coronary artery injury: Results in a porcine model," J Am Coll Cardiol, Vol. 19, No. 2, pp. 267-274, 1992. https://doi.org/10.1016/0735-1097(92)90476-4