• Title/Summary/Keyword: in-stent restenosis

Search Result 55, Processing Time 0.039 seconds

Brachytherapy in Coronary Artery Disease (관상동맥질환의 방사성동위원소 치료)

  • Song, Ho-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • Coronary artery disease is a loading cause of morbidity and mortality across the world. Percutaneous coronary intervention has become the major technique of revascularization. However, restenosis remains a major limitation of this procedure. Recently the need for repeat intervention due to restenosis, the most vexing long-term failure of percutaneous coronary intervention, has been significantly reduced owing to the introduction of two major advances, intracoronary brachytherapy and the drug-eluting stents. Intracoronary brachytherapy has been employed in recent years to prevent restenosis lesions with effective results, principally in in-stent restenosis. Restenosis is generally considered as au excessive form of normal wound healing divided up in precesses: elastic recoil, neointimal hyperplasia, and negative vascular remodeling. Restenosis has previously been regarded as a proliferative process in which neointimal thickening, mediated by a cascade of inflammatory mediators and other factors, is the key factor. Ionizing radiation has been shown to decrease the proliferative response to injury in animal models of restenosis. Subsequently, several randomized, double blind trials have demonstrated that intracoronary brachytherapy can reduce the rates of both angiographic restenosis and clinical event rates in patients undergoing percutaneous coronary intervention for in stent restenosis. Some problems, such as late thrombosis and edge restenosis, have been identified as limiting factors of this technique. Brachytherapy is a promising method of preventing and treating coronary artery restenosis.

Coating defects in polymer-coated drug-eluting stents

  • Bedair, Tarek M.;Cho, Youngjin;Park, Bang Ju;Joung, Yoon Ki;Han, Dong Keun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.131-150
    • /
    • 2014
  • Vascular stenting has a great attention as a treatment for coronary arteries diseases as compared with percutaneous balloon angioplasty. In-stent restenosis and thrombosis are side effects resulting from using bare metal stent (BMS). Employing platelet therapy allowed to reduce the rate of thrombosis, however, the rate of restenosis remains a major problem. In 2002, drug-eluting stents (DESs) were introduced as an effort to reduce the restenosis. The commercially available DESs continue to suffer from coating defects that might lead to a series of adverse effects. Most importantly, multiple concerns remain regarding the polymer coating integrity on metal surfaces or the relation of polymer irregularities to longterm adverse events.

Numerical Analysis on the Effect of Wall Shear Stress Around the Ring Drug-Eluting Stent (고리형 약물분출 스텐트 주위 벽전단응력의 영향에 대한 수치해석)

  • Seo, Tae-Won;Barakat, Abdul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.21-28
    • /
    • 2007
  • The use of drug-eluting stents has dramatically reduced the incidence of restenosis however, much remains to be teamed about the performance of these stouts. In the present study, we tested the hypothesis that the design of drug-eluting stents influences the efficacy of local drug delivery to the arterial wall and that this effect depends on both arterial geometry and the prevailing flow conditions. We performed computational simulations in which the coupled Navier-Stokes and advection-diffusion equations were solved to determine the flow field and drug concentration in the vicinity of model drug-eluting stouts It is found that the characteristics of flow phenomena can be influenced greatly by the ratio of stent diameter to vessel diameter. The presence of drug-eluting stent may have profound effect on wall shear stresses, recirculation sizes and drug distributions. The results show that recirculation zone is influenced by the imposed flow conditions and stent diameter. In pulsatile flow, the low wall shear stress and high drug concentration occur along the arterial wall during the decelerating flow conditions. These results could provide the guideline for future drug-eluting stent designs toward reducing restenosis by affecting local wall shear stress distributions associated with neointimal hyperplasia.

Surgical Treatment of Bronchial Restenosis Occuring After Insertion of Self-Expandable Metalic Stent in Patients with Bronchial Stenosis -2 Cases Reports- (기관지협착환자에서 기관지내 팽창성 급속 스텐트 삽입후 재발한 기관지협착 치험 2례)

  • Kim, Woo-Chan;Jin, Ung;Rha, Suk-Joo;Jo, Keon-Hyon;Lee, Sun-Hee;Kwack, Moon-Sub;Kim, Se-Wha
    • Journal of Chest Surgery
    • /
    • v.28 no.5
    • /
    • pp.499-503
    • /
    • 1995
  • Since the insertion of self expandable metalic stent[SEMS has became popular method for hollow organ stenosis, many attempts for further apply the stent to airway stenosis as an simple procedure has been made, but intrabronchial migration of stent or occurrence of inflammatory granuloma around stent develop occasionally and sometimes it worsen bronchial stenosis further more. This report describes 2 case of surgically treated bronchial restenosis in whom intrabronchial stent were applied for release of bronchial stenosis. Our surgical option was pneumonectomy and bronchoplasty with sleeve right middle and upper lobectomy respectively. During the operation we found the SEMSs were tightly impacted in restenotic bronchial lumen with overgrowth of granulation tissues. The bronchial obstructions occupied more than 90% of lumens in both cases, and needed much complicated procedure to be relieved. Therefore, even though the insertion of SEMS remains as a prcedure determined by the physician`s preference, it has to be considered prudently that the use of SEMS can cause severe restenosis and the surgeon has more difficulties in performing segmental resection of restenotic bronchus in patient with SEMS previously inserted. Throughout these experiences we can conclude that the insertion of SEMS must be performed only in very selected cases of bronchial stenosis.

  • PDF

Fabrication and Evaluation of Polyelectrolyte Complexes of Dextran Derivatives for Drug Coating of Coronary Stents

  • Jang, Eun-Jae;Lee, So-Youn;Bae, In-Ho;Park, Dae Sung;Jeong, Myung Ho;Park, Jun-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.586-590
    • /
    • 2019
  • The aim of this study was to fabricate a dextran polyelectrolyte multi-layer on a bare metal stent (BMS) and to evaluate bio-physical properties of the layer. Diethylaminoethyl-dextran (DEAE-D) as a polycation and dextran sulfate (DS) as a polyanion were successively coated on the bare metal stent by a well-known layer-by-layer procedure. The morphology of the stent surface and its cell adhesion were studied after each coating step by scanning electron microscopy. The stent showed more blotched and slightly rougher morphology after dextran-DS coating. The contact angle of the DEAE-DS group ($39.5{\pm}0.15^{\circ}$) was significantly higher than that of the BMS group ($45.16{\pm}0.08^{\circ}$), indicating the improvement of hydrophilic. The SMC proliferation inhibition in the DEAE-DS-coated stent group ($20.9{\pm}0.04%$) was stronger than that in the control group ($21.7{\pm}0.10%$ in DS-coated group only). The DEAE-DS coating is desired for stent coating materials with biocompatibility and anti-restenosis effect.

Restenosis and Remodeling (관동맥성형술 후의 혈관 재협착 및 재형성)

  • Chae, Jei-Keon
    • 대한핵의학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.205-208
    • /
    • 1999
  • Percutaneous Transluminal Coronary Angioplasty (PTCA) remains limited by restenosis that occurs in 30 to 50% of patients with coronary artery disease. During the last decade, numerous agents have been used to prevent restenosis. Despite positive results in animal models, no pharmacological therapy has been found to significantly decrease the risk of restenosis in humans. These discrepancies between animal models and clinical situation were probably related to an incomplete understanding of the mechanism of restenosis. Neointimal thickening occurs in response to experimental arterial injury with a balloon catheter. Neointimal formation involves different steps: smooth muscle cell activation, proliferation and migration, and the production of extracellular matrix. The factors that control neointimal hyperplasia include growth factors, humoral factors and mechanical factors. Arterial remodeling also plays a major role in the restenosis process. Studies performed in animal and human subjects have established the potentials for "constrictive remodeling" to reduce the post-angioplasty vessel area, thereby indirectly narrowing the vessel lumen and thus contributing to restenosis. The reduction of restenosis rate in patients with intracoronary stent implantation has been attributed to the preventive effect of stent itself for this negative remodeling. In addition to these mochanisms for restenosis, intraluminal or intra-plaque thrombus formation, reendothelialization and apoptosis theories have been introduced and confirmed at least in part.

  • PDF

Fabrication and evaluation of hydrophobic metal stent using electron beam equipment (전자빔 처리를 통한 발수성 금속 스텐트 제작 및 평가)

  • Kim, Jisoo;Park, Jongsung
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.165-169
    • /
    • 2021
  • The objective of this study was to fabricate a novel hydrophobic stent for reducing restenosis by employing electron beam equipment. The stent was fabricated from a CoCr alloy tube by using a femtosecond laser and was treated with argon plasma. Subsequently, the stent's surface specification changed from hydrophilic to hydrophobic. Application of the electron beam offers several advantages such as a short processing time, whole surface reforming, and enhancement of material properties. As the surface of the stent was rendered hydrophobic, it can provide equivalent or enhanced mechanical properties and greater functionality with a higher radial force at the extended stent in a blood vessel. The obtained results corresponding to the mechanical properties indicate that the contact angle increased to approximately 130°, and the radial force increased to approximately 3 N. Furthermore, cell culture experiments were conducted for verifying whether cells were cultured on the surface-modified CoCr surface. Based on the obtained results, it is believed that an effective reduction in the restenosis of inserted vascular stents is possible.

Numerical Evaluation and Shape Design of Coronary Artery Stent (관상동맥혈관용 스텐트의 수치해석 및 형상 설계)

  • Kim, Dae-Young;Lee, Seung-Yeol;Kim, Heon-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.103-108
    • /
    • 2012
  • Restenosis symptom, which is well known as a problem of stents, is due to the recoil and expansion pressure depending on shapes of stent. In order to reduce the effect of recoil problem, study on pattern and shape for the stent is required and the expansion pressure and recoil should be evaluated. This paper aims at evaluating mechanical characteristics of stent used in surgery for vessel stenosis. The expansion process of coronary artery stent in vessel for two models including the Cypher$^{(R)}$ from Johnson & Johnson$^{TM}$ and a suggested model were simulated using the Finite Element Analysis. Comparison of the directional recoil simulation results was made. The issues in the deformed shape of vessel and recoil of Cypher$^{(R)}$ were partially resolved in the suggested model. Therefore, the shape design suggested in this paper was able to reduce the restenosis symptom.

Comparison between Basic and Inverse Dual Drug and Peptide-coated Stents in a Porcine Restenosis Model

  • Jang, Eun-Jae;Lee, So-Youn;Bae, In-Ho;Park, Dae Sung;Jeong, Myung Ho;Park, Jun-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.502-508
    • /
    • 2020
  • Dual drug-eluting stents (DES) is a primary treatment method for coronary arterial diseases in current interventional cardiology practice. However, their pathological results according to the sequence of coating of drugs have not been reported yet. The peptide-dopamine dissolved in acetonitrile was coated onto the Chonnam National University Hospital (CNUH) stent using an electrospinning coating machine. For secondary coating (e.g., sirolimus coating, designated as SPS), sirolimus (SRL) and poly lactic-glycolic acid (PLGA) were mixed in tetrahydrofuran (THF), and the solution was then coated on the CNUH stent that had underwent the primary peptide coating using an electrospinning and spray technique. Next, the peptide-dopamine was coated on the SRL-PLGA coated stent (PSS). In this study, it was confirmed that endothelialization was promoted without being significantly affected by the coating order (SPS or PSS). The sequence of drug and peptide coating may affect the development of restenosis and PSS was effective in the prevention of restenosis compared to that of using SPS.

Delayed Carotid Wallstent Shortening Resulting in Restenosis Following Successful Carotid Artery Angioplasty and Stenting

  • Yoon, Seok-Mann;Jo, Kwang-Wook;Baik, Min-Woo;Kim, Young-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.5
    • /
    • pp.495-497
    • /
    • 2009
  • Carotid angioplasty and stenting (CAS) for carotid stenosis has been increasingly used as an alternative treatment in patients not eligible for surgery. Even though CAS can be performed relatively simply in many cases, various complications can occur. We report four cases of CAS using the Carotid Wallstent, which were complicated by delayed shortening of the stent, resulting in restenosis after successful CAS.