DOI QR코드

DOI QR Code

FUZZY SOFT MODULES

  • Xiao, Gaoxiang (Department of Mathematics, Hubei University for Nationalities) ;
  • Xiang, Dajing (Department of Mathematics, Hubei University for Nationalities) ;
  • Zhan, Jianming (Department of Mathematics, Hubei University for Nationalities)
  • Received : 2011.02.07
  • Accepted : 2011.06.21
  • Published : 2012.01.31

Abstract

In this paper, the concept of fuzzy soft module is introduced, some of their properties are discussed. Furthermore, the concept of fuzzy soft exactness is also given.

Keywords

References

  1. H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007), 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008
  2. A. Aygunoglu and H. Aygun, Introduction to fuzzy soft groups, Comput. Math. Appl. 58 (2009), 1279-1286. https://doi.org/10.1016/j.camwa.2009.07.047
  3. D. Chen, E. C. C. Tsang, D. S. Yeung and X. Wang, The parametrization reduction of soft sets and its applications, Comput. Math. Appl. 49 (2005), 757-763. https://doi.org/10.1016/j.camwa.2004.10.036
  4. F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008), 2621-2628. https://doi.org/10.1016/j.camwa.2008.05.011
  5. F. Feng, Y. B. Jun, X. Liu and L. Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math. 234 (2010), 10-20. https://doi.org/10.1016/j.cam.2009.11.055
  6. Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008), 1408-1413. https://doi.org/10.1016/j.camwa.2008.02.035
  7. Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. Sci. 178 (2008), 2466-2475.
  8. Y. B. Jun, K. J. Lee and C. H. Park, Fuzzy soft set theory applied to BCK/BCI-algebras, Comput. Math. Appl. 59 (2010), 3180-3192. https://doi.org/10.1016/j.camwa.2010.03.004
  9. X. Liu, D. Xiang, J. Zhan and K. P. Shum, Isomorphism theorems for soft rings, Algebra Collquium, 2011, in press.
  10. X. Liu, Normal soft groups, J. Hubei Institute for Nationalities. 27 (2009), 168-170.
  11. P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003), 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6
  12. P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, J. Fuzzy Math. 9 (2001), 589-602.
  13. P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002), 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  14. D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999), 19-31.
  15. Z. Pawlak, Rough sets, Int. J. of Inform. Comput. Sci. 11 (1982), 341-356. https://doi.org/10.1007/BF01001956
  16. J. J. Rotman, An Introduction to Homological Algebra, New York, Academic Press. 1979.
  17. A. R. Roy and P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math. 203 (2007), 412-418. https://doi.org/10.1016/j.cam.2006.04.008
  18. Q. Sun, Z. Zhang and J. Liu. Soft sets and soft modules. RSKT 2008, LNAI 5009 (2008), 403-409.
  19. D. Xiang and X. Liu, A review on soft set theory, J. Hubei Institute for Nationalities 27 (2009), 361-365.
  20. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. Theoretical approaches on certain characterization of L‐fuzzy soft modules vol.37, pp.2, 2012, https://doi.org/10.1002/num.22596