DOI QR코드

DOI QR Code

Review: Magnetite Synthesis using NanoFermentation

Review: NanoFermentation을 이용한 자철석 합성연구

  • Moon, Ji-Won (Biosciences Division, Oak Ridge National Laboratory) ;
  • Roh, Yul (Department of Earth and Environmental Science, Chonnam National University) ;
  • Phelps, Tommy J. (Biosciences Division, Oak Ridge National Laboratory)
  • 문지원 (오크릿지 미국립연구소, 미생물 생리학 및 병리학 그룹) ;
  • 노열 (전남대학교 자연과학대학 지구환경과학부) ;
  • Received : 2011.11.21
  • Accepted : 2012.04.22
  • Published : 2012.04.28

Abstract

Biomineralization has been explored for geochemical cycles and microbial tolerance mechanisms to metal toxicity. Here, we are introducing NanoFermentation which enables economic, environmentally friendly, requiring low input energy, and scalable manufacturing of nano-dimensioned magnetite. We are also focusing on controlling factors of crystallite size which can determine superparamagnetism and ferrimagnetism. Controlling factors are such as microbial species, temperature, incubation time, medium composition, substituted elements and their concentration, precursor type, reaction volume, precursor concentration density and their combinations. Crystallite size distribution of biomagnetite depends on the balance between nuclei generation and crystal growth. Biomineralization will elucidate elemental cycles on earth crust and microbial ecology as well as it will be applied to material sciences and devices via massive production of nanomaterials.

미생물에 의한 광물합성은 지화학적 순환 및 미생물의 독성에 대한 저항기작을 위해 주로 연구되어져 왔으나 본 논문에서는 NanoFermentation을 통한 경제적, 친환경적, 저에너지, 대량생산이 가능한 나노입자 크기의 자철석 합성연구를 소개하고 또한 초상자성(Superparamagnetism)과 준강자성(Ferrimagnetism)을 결정짓는 입자크기에 대한 조절인자를 살펴보고자 한다. NanoFermentation을 통한 자철석의 합성 시 입자 크기의 조절 인자는 선택된 미생물 종 및 배양 온도, 배양액의 화학적 조성, 배양기간, 치환된 원소의 조성 및 함량, 자철석 전조물질(Precursor)의 형태, 반응 부피의 증가 및 자철석 전조물질의 농도와 같은 조건들의 조합에 의해 결정되어지며 주로 핵형성 및 결정 성장의 균형에 의해 조절된다. 생광물화 작용을 통한 무기재료의 합성 연구는 앞서 언급한 지표에서의 원소의 순환 및 미생물 생리학적 측면뿐만 아니라 최종 산물인 나노입자의 대량 생산을 통해 재료학적 응용 분야에도 많은 파급 효과가 예상된다.

Keywords

References

  1. Bazylinski, D.A. and Frankel, R.B. (2000) Biologically controlled mineralization of magnetic iron minerals by magnetotactic bacteria. in: Lovley D.R. (ed) Environmental microbe-metal interaction. ASM Washington DC, p.109-144.
  2. Billas, I.M.L., Chatelain, A. and de Heer, W.A. (1994) Magnetism from the atom to the bulk in nickel, cobalt and iron clusters. Science, v.265, p.1682-1684. https://doi.org/10.1126/science.265.5179.1682
  3. Blakemore, R.P. (1975) Magnetotactic bacteria. Science, v.190, p.377-379. https://doi.org/10.1126/science.170679
  4. Bousserrhine, N., Gasser, U.G., Jeanroy, E. and Berthelin, J. (1999) Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al-substituted goethites. Geomicrobiol. J., v.16, p.245-258. https://doi.org/10.1080/014904599270622
  5. Butler, R.F. and Banerjee, S.K. (1975) Theoretical singdomain grain size range in magnetic and titanomagnetite. J. Geophys. Res., v.80, p.4049-4058. https://doi.org/10.1029/JB080i029p04049
  6. Caffarena, V.D.R., Ogasawara, T., Pinho, M.S. and Capitaneo, J.L. (2007) Synthesis, characterization of nanocrystalline $Ba_3Co_{0.9}Cu_{1.1}Fe_{24}O_{41}$ powder and its application in the radar cross section reduction. Mat Sci Pol, v.25, p.875-884.
  7. Fredrickosn, J.K., Zachara, J.M., Kukkadapu, R.K. Gorby, Y.A., Smith, S.C. and Brown, C.F. (2001) Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium. Environ, Sci. Technol., v.35, p.703-712. https://doi.org/10.1021/es001500v
  8. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman, N.W. and Li, S.-M. (1998) Biogenic iron mineralization accompanying the dissimilatory reducing of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta, v.62, p.3239-3257. https://doi.org/10.1016/S0016-7037(98)00243-9
  9. Kukkadapu, R.K., Zachara, J.M., Fredrickson, J.K., and Kennedy, D.W. (2004). Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe(III)-reducing bacterium: formation of carbonate green rust in the presence of phosphate. Geochim. Cosmochim. Acta, v.68, p.2799-2814. https://doi.org/10.1016/j.gca.2003.12.024
  10. Lemke, A.-J., Senfft, von Pilsach, M.-I., Lubbe, A., Bergermann, C., Riess, H. and Felix, R. (2004) MRI after magnetic drug targeting in patients with advanced solid malignant tumors. Eur Radiol., v14, p.1949-1955. https://doi.org/10.1007/s00330-004-2445-7
  11. Liu, S.V., Zhou, J., Zhang, C., Cole, D.R., Gajdarziska-Josifovska, M. and Phelps, T.J. (1997) Thermophilic Fe(III)-reducing bacteria from the deep subsurface: The evolutionary implications. Science, v.277, p.1106-1109. https://doi.org/10.1126/science.277.5329.1106
  12. Love, L.J., Jansen, J.F., McKnight, T.E., Roh, Y. and Phelps, T.J. (2004) A magnetocaloric pump for microfluidic application. IEEE T. Nanobiosci., v.3, p.101-110. https://doi.org/10.1109/TNB.2004.828265
  13. Love, L.J., Jansen, J.F., McKnight, T.E., Roh, Y., Phelps, T.J., Yeary, L.W. and Cunningham, G.T. (2005) Ferrofluid field induced flow for microfluidic application. IEEE T Mechatron, v.10, p.68-76. https://doi.org/10.1109/TMECH.2004.842224
  14. Lovley, D.R. (1995) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbiol., v.14, p.85-93. https://doi.org/10.1007/BF01569889
  15. Lovley, D.R., Stolz, J.F., Nord Jr., G.L. and Phillips E.J.P. (1987) Anaerobic production of magnetite by dissimilatory iron-reducing micro-organism. Nature, v.330, p.252-254. https://doi.org/10.1038/330252a0
  16. Lowenstam, H.A. (1981) Mineral formed by organism. Science, v.211, p.1126-1131. https://doi.org/10.1126/science.7008198
  17. Mohapatra, S., Pramanik, N., Ghosh, S.K. and Paramanik, P. (2006) Synthesis and characterization of ultrafine poly(vinylalcohol phosphate) coated magnetite nanoparticles. J. Nanosci. Nanotechnol., v.6, p.823-829. https://doi.org/10.1166/jnn.2006.117
  18. Moon J.-W., Yeary, L.W., Rondinone, A.J., Rawn, C.J., Kirkham, M.J., Roh, Y., Love, L.J. and Phelps, T.J., (2007c) Magnetic response of microbially synthesized transition metal- and lanthanide-substituted nanosized magnetites. J. Magn. Magn. Mater., v.313, p.283-292. https://doi.org/10.1016/j.jmmm.2007.01.011
  19. Moon, J.-W., Rawn, C.J., Rondinone, A.J., Love, L.J., Roh, Y., Everett, S.M. Lauf, R.J. and Phelps, T.J. (2010a) Large-scale production of magnetic nanoparticles using bacterial fermentation. J. Ind. Micorbiol. Biotechnol., v.37, p.1023-1031. https://doi.org/10.1007/s10295-010-0749-y
  20. Moon, J.-W., Rawn, C.J., Rondinone, A.J., Wang, W., Vali, H., Yeary, L.W., Love, L.J., Kirkham, M.J., Gu, B. and Phelps, T.J. (2010b) Crystallite sizes and lattice parameters of nano-biomagnetite particles J. Nanosic. Nanotechnol., v.10, p.8298-8306. https://doi.org/10.1166/jnn.2010.2745
  21. Moon, J.-W., Roh, Y., Lauf, R.J., Vali, H., Yeary, L.W. and Phelps, T.J. (2007b) Microbial preparation of metalsubstituted magnetite nanoparticles. J. Microbiol. Methods, v.70, p.150-158. https://doi.org/10.1016/j.mimet.2007.04.012
  22. Moon, J.-W., Roh, Y., Yeary, L.W., Lauf, R.J., Rawn, C.J., Love, L.J. and Phelps, T.J. (2007a) Microbial formation of lanthanide-substituted magnetite by Thermoanaerobacter sp. TOR-39. Extremophiles, v.11, p.859-867. https://doi.org/10.1007/s00792-007-0102-1
  23. Phelps, T.J., Raione, E.G., White, D.C. and Fliermans, C.B. (1989) Microbial activity in deep subsurface environment. Geomicrobiol. J., v.7, p.79-91. https://doi.org/10.1080/01490458909377851
  24. Phelps, T.J., Lauf, R.J., Roh, Y. and Moon, J.-W. (2006) Fermentative process for making inorganic nanoparticles. U.S. Patent 7,060,73.
  25. Rabanal, M.E., Varez, A., Levenfeld, B. and Torralba, J.M. (2003) Optimization of the synthesis of soft magnetic materials by mechanochemical process at room temperature. Mater. Sci. Forum, v.424, p.4349-4354.
  26. Roca, A.G., Morale, M.P. and Serna, C.J. (2006) Synthesis of monodispered magnetic nanoparticles from different organometallic precursors. IEEE T. Magn. v.42, p.3025-3029. https://doi.org/10.1109/TMAG.2006.880111
  27. Roh, Y., Gao, H., Vali, H., Kennedy, D.W., Yang, Z.K., Gao, W., Dohnalkova, A.C., Stapleton, R.D., Moon, J.-W., Phelps, T.J., Fredrickson, J.K. and Zhou, J. (2006) Metal reduction and iron biomineralization by psychrotolerant Fe(II)-reducing bacterium, Shewanella sp. strain, PV-4. Appl. Environ. Microbiol., v.72, p.3236-3244. https://doi.org/10.1128/AEM.72.5.3236-3244.2006
  28. Roh, Y., Zhang, C.-L., Vali, H., Lauf, R.J., Zhou, J. and Phelps, T.J. (2003) Biogeochemical and environmental factors in Fe biomineralization: Magnetite and siderite formation. Clays Clay Miner., v.51, p.83-95. https://doi.org/10.1346/CCMN.2003.510110
  29. Roh, Y. Lauf, R.J., McMillan, A.D., Zhang, C., Rawn, C.J., Bai, J. and Phelps, T.J. (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun., v.118, p.529-534. https://doi.org/10.1016/S0038-1098(01)00146-6
  30. Sidhu, P.S., Gilkes, R.J. and Posner, A.M. (1978) The synthesis and some properties of Co, Ni, Zn, Cu, Mn, and Cd substituted magnetites. J Inorg. Nucl. Chem., v.40, p.429-435. https://doi.org/10.1016/0022-1902(78)80418-7
  31. Slobodkin, A.I. and Wiegel, J. (1997) Fe(III) as an electron acceptor for $H_2$ oxidation in thermophilic anaerobic enrichment clutures from geothermal areas. Extremophiles, v.1, p.106-109. https://doi.org/10.1007/s007920050022
  32. Stapleton, R.D., Jr., Sabree, J.L., Palumbo, A.V., Moyer, C., Dvol, A., Roh, Y. and Zhou, J. (2005) Metal reduction at cold temperatures by Shewanella isolates from various marine environments. Aquat. Microb. Ecol., v.38, p.81-91. https://doi.org/10.3354/ame038081
  33. Wang C.L., Michels, P.C., Dawson, S.C., Kitisakkul, S., Baross, J.A., Keasling, J.D. and Clark, D.S. (1997) Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl. Environ. Microbiol., v.63, p.4075-4078.
  34. Xu, J., Yang, H., Fu, W., Du, K., Sui, Y., Chen, J., Zeng, Y., Li, M. and Zhou, G. (2007) Preparation and magnetic properties of magnetite nanoparitlces by sol-gel method. J. Magn. Magn. Mater., v.309, p.307-311. https://doi.org/10.1016/j.jmmm.2006.07.037
  35. Yavuz, C.T., Mayo, J.T., Yu, W.W., Prakash, A., Falkner, J.C., Yean, S., Cong, L., Shipley, H.J., Kan, A., Tomson, M., Natelson, D. and Colvin, V.L. (2006) Low-field magnetic separation of monodisperse $Fe_3O_4$ nanocrystals. Science, v.314, p.964-967. https://doi.org/10.1126/science.1131475
  36. Yeary, L.W., Moon, J.-W., Rawn, C.J., Love, L.J., Rondinone, A.J., Thompson, J.R., Chakoumakos, B.C. and Phelps, T.J. (2011) Magnetic properties of bio-synthesized zinc ferrite nanoparticles. J. Magn. Magn. Mater., v.323, p.3043-3048. https://doi.org/10.1016/j.jmmm.2011.06.049
  37. Yeary, L.W., Moon, J.-W., Love, L.J., Thompson, J.R., Rawn, C.J. and Phelps, T.J. (2005) Magnetic properties of biosynthesized magnetite nanoparticles. IEEE. T. Magnetics, v.41, p.4384-4389. https://doi.org/10.1109/TMAG.2005.857482
  38. Zhang, C., Liu, S., Logan, J., Mazumder, R. and Phelps, T.J. (1996) Enhancement of Fe(III), Co(III), and Cr(VI) reduction at elevated temperatures and by a thermophilic bacterium. Appl. Biochem. Biotechnol., v.57/58, p.923-932. https://doi.org/10.1007/BF02941773
  39. Zhang, C., Liu, S., Phelps, T.J., Cole, D.R., Horita, J., Fortier, S.M., Elless, M. and Valley, J.W. (1997) Physicochemical, mineralogical, and isotopic characterization of magnetite-rich iron oxides formed by thermophilic iron-reducing bacteria. Geochim. Cosmochim. Acta, v.61, p.4621-4632. https://doi.org/10.1016/S0016-7037(97)00257-3
  40. Zhang, C., Vali, H., Romanek, C.S., Phelps, T.J. and Liu, S.V. (1998) Formation of single-domain magnetite by a thermophile bacterium. Am. Miner., v.83, p.1409-1418. https://doi.org/10.2138/am-1998-11-1230
  41. Ziolo, R.F., Giannelis, E.P., Weinstein, B.A., O'Horo, M.P., Ganguly, B.N., Mehrotra, V., Russell, M.W. and Huffman, D.R. (1992) Matrix-mediated synthesis of nanocrystalline ${\gamma}-Fe_2O_3$: a new optically transparent magnetic material. Science, v.257, p.219-223. https://doi.org/10.1126/science.257.5067.219