DOI QR코드

DOI QR Code

Omega-3 and -9 Fatty Acid Combination Effects on Broiler Chicks to Produce Chicks with High in Omega-3 Polyunsaturated Fatty Acid

오메가-3와 -9 지방산의 혼합 급이가 계육내 오메가-3 계열 다가불포화지방산의 조성에 미치는 영향

  • Shin, Dae-Keun (Swine Science and Technology Center, Gyeongnam National University of Science and Technology) ;
  • Choi, Seung-Ho (Department of Animal Science, 2471 TAMU, Texas A&M University, College Station) ;
  • Cho, Young-Moo (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Park, Jae-Hong (Animal Genetic Resources Station, National Institute of Animal Science, RDA)
  • 신대근 (경남과학기술대학교 양돈과학기술센터) ;
  • 최성호 (텍사스 A&M 주립대학교 축산학과) ;
  • 조영무 (국립축산과학원 가축유전자원시험장) ;
  • 박재홍 (국립축산과학원 가축유전자원시험장)
  • Received : 2011.10.04
  • Accepted : 2011.11.22
  • Published : 2012.03.31

Abstract

To evaluate the effects of n-3 and n-9 fatty acid combination on broiler chicks, diets containing the combinations of five different fat sources including flaxseed oil, fish oil, EPA, DHA and olive oil were provided, and all chicks were processed at 4 weeks of growth. Liver, breast and thigh samples were collected and fatty acid composition and/or CIE $L^*$, $a^*$ and $b^*$ measurement were measured. Also, live chick and liver weights were weighed and the ratio was provided as an evidence of fat accumulation in liver. No significant difference was determined in both live and liver weight ratio and liver color. EPA was low in FHO as compared to livers from others. In contrast, DHA was significantly high in FHO. In broiler breasts derived from FDO, AA and n-3 fatty acid content was high, but only numerical differences of EPA and DHA were determined in breasts from FDO. The thighs from FHO showed high in EPA, DHA and n-3 fatty acid content but had low in AA and n-6 to n-3 ratio. Therefore, the results indicate that broiler chicken diets containing either FDO or FHO may be possible combination diets increasing n-3 polyunsaturated fatty acids in broiler chicks.

본 연구는 오메가-3 다가불포화지방산의 함량을 높인 육계의 생산을 위하여 n-3 지방산과 올리브유를 혼합한 사료[CON(5% 일반지방), FXO(2.5% 아마씨유+ 2.5% 올리브유), FEO(2.45% 아마씨유+ 0.05% EPA + 2.5% 올리브유), FDO(2.45% 아마씨유+ 0.05% DHA + 2.5% 올리브유) 그리고 FHO(2.5% 어유+ 2.5% 올리브유)]를 육계에게 4주 간 급이하였다. 4주간의 사양 후 도계를 통하여 닭의 간, 가슴살 그리고 다리살을 채취하였다. 채취한 간은 간 무게/생체중의 비율, 육색 그리고 지방산의 조성 분석을 위하여 사용되었으며, 닭 가슴살과 다리살은 지방산 함량 분석을 위하여 사용되었다. FHO 사료를 급이한 육계의 간은 EPA가 유의적으로 낮았으나 DPA와 DHA는 높았다(p<0.05). 가슴 근육은 n-6 지방산인 AA와 DPA 그리고 n-3 지방산에서 FDO 처리구가 이외의 처리구 대비 유의적으로 높았으며(p>0.05), 더욱이 유의적인 차이는 나타나지 않았으나 수치적으로 EPA와 DHA 함량 역시 높았다. LNA 함량은 FEO와 FDO 사료를 급이한 닭의 다리 근육에서 유의적으로 높았으며, AA 함량 또한 FHO와 유사하였다. FHO 사료를 급이한 닭의 다리 근육은 EPA, DHA 그리고 n-3 지방산에서 유의적으로 높은 함량을 나타낸 반면에 AA의 함량과 n-6/n-3 지방산의 비율은 유의적으로 낮았다(p<0.05). 따라서 본 실험은, n-3의 다가불포화지방산의 함량을 증가시킴과 동시에 n-6/n-3 비율의 향상을 위해서는 근섬유 조성에 따라 그 접근법이 달라야 된다는 사실이 조사되었으며, 가슴과 다리 근육 내 n-3 지방산의 함량을 증가시키기 위해서는 각각 FDO와 FHO 사료의 급이가 적합할 것으로 판단된다.

Keywords

References

  1. Alwayn IP, Andersson C, Zauscher B, Gura K, Nose V, Puder M 2005 Omega-3 fatty acids improve hepatic steatosis in a murine model: potential implications for the marginal steatotic liver donor. Transplantation 79:606-608. https://doi.org/10.1097/01.TP.0000150023.86487.44
  2. Bean LD, Leeson S 2003 Long-term effects of feeding flaxseed on performance and egg fatty acid composition of brown and white hens. Poult Sci 82:388-394. https://doi.org/10.1093/ps/82.3.388
  3. Betti M, Perez TI, Zuidhof MJ, Renema RA 2009 Omega-3-enriched broiler meat: 3. Fatty acid distribution between triacylglycerol and phospholipid classes. Poult Sci 88:1740-1754. https://doi.org/10.3382/ps.2008-00449
  4. Cleland LG, James MJ, Proudman SM 2006 Fish oil: What the prescriber needs to know. Arthritis Res Ther 8:2002-2010.
  5. El-Badry AM, Graf R, Clavien PA 2007a Omega3-Omega6: What is right for the liver? J Hepatology 47:718-725. https://doi.org/10.1016/j.jhep.2007.08.005
  6. El-Badry AM, Moritz W, Contaldo C, Tian Y, Graf R, Clavien PA 2007b Prevention of reperfusion injury and microcirculatory failure in macrosteatotic mouse liver by omega-3 fatty acids. Hepatology 45: 855-863. https://doi.org/10.1002/hep.21625
  7. Flachs P, Horakova O, Brauner P, Rossmies M, Pecina P, Franssem-van Hal N, Ruzickova J, Sponarova J, Drahota Z, Vlcek C, Keijer J, Houstek J, Igarashi M, Ma K, Chang L, Bell JM, Rapoprt SI 2007 Dietary n-3 PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain. J Lipid Res 48:2463-2470. https://doi.org/10.1194/jlr.M700315-JLR200
  8. Folch J, Less M, Sloane-Stanley GH 1957 A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497-509.
  9. Igarashi M, Ma K, Chang L, Bell JM, Rapoprt SI 2007 Dietary n-3 PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain. J Lipid Res 48:2463-2470. https://doi.org/10.1194/jlr.M700315-JLR200
  10. Jump DB 2004 Fatty acid regulation of gene transcription. Crit Rev in Clinical Lab Sci 41:41-78. https://doi.org/10.1080/10408360490278341
  11. Kurihara T, Adachi Y, Yamagata M, Abe K, Akimoto M, Hashimoto H 1994 Role of eicosapentaenoic acid in lipid metabolism in the liver, with special reference to experimental fatty liver. Clin Ther 16:830-837.
  12. Leonard AE, Kelder B, Bobik EG, Chuang LT, Lewis CJ, Kopchick JJ, Mukerji P, Huang YS 2002 Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids 37:733-740. https://doi.org/10.1007/s11745-002-0955-6
  13. Nakamura MT, Nara TY 2004 Structure, function and dietary regulation of $\Delta6,\;\Delta5\;and\;\Delta9$ desaturases. Annu Rev Nutr 24:345-376. https://doi.org/10.1146/annurev.nutr.24.121803.063211
  14. Narciso-Gaytan C, Shin D, Sams AR, Keeton JT, Miller RK, Smith SB, Sanchez-Plata MX 2011 Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat. Poult Sci 90:473-480. https://doi.org/10.3382/ps.2010-01002
  15. Newman RE, Bryden WL, Fleck E, Ashes JR, Buttermer WA, Storlien LH, Downing JA 2002 Dietary n-3 and n-6 fatty acids alter avian metabolism: Metabolism and abdominal fat deposition. Br J Nutr 88:11-18. https://doi.org/10.1079/BJN2002580
  16. SAS 2008 SAS/STAT Software. Release 9.2, SAS Inst Inc Cary, NC, USA.
  17. Schreiner M, Hulan HW, Razzazi-Fazeli E, Bohm JB, Moreira RG 2005 Effect of different sources of dietary omega-3 fatty acids on general performance and fatty acid profiles of thigh, breast, liver and portal blood of broilers. J Sci Food Agric 85:219-226. https://doi.org/10.1002/jsfa.1948
  18. Shin D 2010 Effect of conjugated linoleic acid or oleic acid addition on fatty acid composition profiles of poultry meat. Ph.D. Dissertation, Texas A&M University at College Station, TX USA.
  19. Shin D, Narciso-Gaytan C, Park JH, Smith SB, Sanchez-Plata MX, Ruiz-Feria CA 2011 Dietary combination of the effects of conjugated linoleic acid and flaxseed or fish oil on the deposition of linoleic and arachidonic acid in poultry meat. Poult Sci 90:1340-1347. https://doi.org/10.3382/ps.2010-01167
  20. Smith SB, Hively TS, Cortese GM, Han JJ, Chung KY, Castenada P, Gilbert CD, Adams VL, Mersmann HJ 2002 Conjugated linoleic acid depresses the $\Delta9$-desaturase index and stearoyl coenzyme A desaturase enzyme activity in porcine subcutaneous adipose tissue. J Anim Sci 80:2110-2115.
  21. Vijaimohan K, Jainu M, Sabitha KE, Subramaniyam S, Anandhan C, Shyamala Devi CS 2006 Beneficial effects of alpha linolenic acid rich flaxseed oil on growth performance and hepatic cholesterol metabolism in high fat diet fed rats. Life Sci 79:448-454. https://doi.org/10.1016/j.lfs.2006.01.025
  22. 이원주 2006 여드름과 음식. 2006년 제 58차 대한피부과학회 춘계학술대회. p110.
  23. 한국계육협회 2011 http://www.chicken.or.kr/chicken/data/data1.htm Accessed July, 18. 2011.
  24. 한국농촌경제연구원 2010 축산관측(육계): 사육동향과 전망, 가격동향과 전망, 배합사료 생산동향, 수출입동향. 통권 제257호 1-4.

Cited by

  1. Effects of Dietary Flammulina velutipes Mycelium on Physico-chemical Properties and Nutritional Components of Chicken Meat vol.23, pp.7, 2013, https://doi.org/10.5352/JLS.2013.23.7.893
  2. Feed additives in broiler diets to produce healthy chickens without in-feed antimicrobial compounds vol.41, pp.4, 2014, https://doi.org/10.7744/cnujas.2014.41.4.441