A Parametric Study of Sheet Pile Wall Near the Laterally Loaded Pile

횡방향 재하 말뚝 주변의 널말뚝에 관한 변수연구

  • 윤희정 (홍익대학교 건설도시공학부)
  • Published : 2012.08.01

Abstract

Construction of sheet pile retaining walls in urban and coastal regions has resulted in sheet pile walls in close proximity to laterally loaded pile foundations. However, there is currently little information available in the literature to assist engineers for quantifying the response of sheet pile walls. This study provides a quantitative method for estimating sheet pile wall response due to loads imposed from a nearby laterally loaded pile. Three dimensional finite element analyses using commercial software, ABAQUS, were performed to assess the response of a sheet pile wall and nearby laterally loaded pile. The soils were modeled using Drucker-Prager constitutive model with associated flow rule, and the sheet pile wall and pile foundation were assumed to behave linear elastic. Four parameters were investigated: sheet pile wall bending stiffness, distance from the pile face to the wall, excavation depth in front of the sheet pile wall, and elastic modulus of the soil. Results from the analyses have been used to develop preliminary design charts and simple equations for estimating the maximum horizontal displacement and maximum bending moment in the sheet pile wall.

널말뚝을 해안지역이나 도심지역에 건설하는 경우 주변에 위치한 횡방향 재하 말뚝의 영향권 내에 존재하게 되는 경우가 발생하게 되지만, 기존 설계방법에서는 이러한 영향에 대하여 고려하고 있지 않다. 본 연구를 통해 말뚝에 횡방향 하중이 재하되는 경우 근접한 널말뚝에 미치는 영향을 정량적으로 예측할 수 있는 방법을 제안하고자 한다. 상용프로그램인 ABAQUS를 이용하여 3차원 유한요소 모델을 만들었으며 지반 구성모델로는 Drucker-Prager 모델, 널말뚝과 말뚝은 선형탄성으로 거동하도록 모사하였다. 널말뚝의 휨강성, 말뚝과 널말뚝 간의 거리, 굴착깊이, 그리고 지반의 탄성계수 등 총 4가지 변수들을 사용하여 횡방향 재하 말뚝이 주변 널말뚝에 미치는 영향을 분석해 보았다. 수치해석 결과를 이용하여 널말뚝에 발생하는 최대 횡방향 변위 및 휨모멘트를 측정할 수 있는 간단한 식을 제시하였다.

Keywords

References

  1. AASHTO(2007), AASHTO LRFD Bridge Design Specifications, American Association of Highway and Transportation Officials, Washington D. C., p. 11-6.
  2. ABAQUS User's Manual(2004), version 6.4, ABAQUS, Inc.
  3. Bowles, J. E.(1988), Foundation Analysis and Design, 4th ed. McGraw Hill Book Co., New York, pp. 613-618.
  4. Chung, Y. M. and Ng, C. W.(2005), Three Dimensional Numerical Investigations of the Influence of Sleeved Piles on the Stability of Retaining Wall, Advances in Deep Foundations, American Society of Civil Engineers, Austin, Texas.
  5. Duncan, J. M. and Chang, C. Y.(1970), Nonlinear Analysis of Stress and Strain in Soils, Journal of Soil Mechanics and Foundations Division, Vol. 96, No. 5, pp. 1629-1653.
  6. Georgiadis, M. and Anagnostopoulos, C.(1988), Lateral Pressure on Sheet Pile Walls due to Strip Load, J. Geotech. and Geoenvir. Engr., Vol. 24, No. 1, pp. 95-98.
  7. Khodair, Y. A. and Hassiotis, S.(2005), Analysis of Soil-Pile Interaction in Integral Abutment, Computers and Geotechnics, Vol. 32, No. 3, pp. 201-209. https://doi.org/10.1016/j.compgeo.2005.01.005
  8. McVay, M., Zhang, L., Molnit, T. and Lai, P.(1998), Centrifuge Testing of Large Laterally Loaded Pile Groups in Sands, J. Geotech. and Geoenvir. Engr., ASCE, Vol. 124, No. 10, pp. 1016-1026. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:10(1016)
  9. Reese, L. C., Wang, S. T., Isenhower, W. M., and Arrellaga, J. A.(2000a), LPILE plus 4.0 Technical Manual, ENSOFT, INC., Austin, TX.
  10. Reese, L. C., Wang, S. T., Isenhower, W. M., Arrellaga, J. A. and H. J.(2000b), LPILE plus 4.0 User Guide, ENSOFT, INC., Austin, TX.
  11. Rowe, P. W.(1951), Cantilever Sheet Piling in Cohesionless Soil, Engineering, London, England, Vol. 172, No. 4467, pp. 316-319.
  12. Yang, Z. and Jeremic, B.(2002), Numerical Analysis of Pile Behaviour under Lateral Loads in Layered Elastic-Plastic Soils, Int. J. Num. Anal. Methods Geomech., Vol. 26, pp. 1385-1406. https://doi.org/10.1002/nag.250
  13. Zhang, L. M., McVay, M. C. and Lai, P. W.(1999), Centrifuge Modeling of Laterally Loaded Single Battered Piles in Sands, Canadian Geotechnical Journal, Vol. 36, No. 6, pp. 1074-1084. https://doi.org/10.1139/t99-072