• Title/Summary/Keyword: Laterally loaded pile

Search Result 74, Processing Time 0.029 seconds

Performance functions for laterally loaded single concrete piles in homogeneous clays

  • Imancli, Gokhan;Kahyaoglu, M. Rifat;Ozden, Gurkan;Kayalar, Arif S.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.529-537
    • /
    • 2009
  • A key parameter in the design of a laterally loaded pile is the determination of its performance level. Performance level of a pile is usually expressed as the maximum head deflection and bending moment. In general, uncertainties in the performance of a pile originates from many factors such as inherent variability of soil properties, inadequate soil exploration programs, errors taking place in the determination of soil parameters, limited calculation models as well as uncertainties in loads. This makes it difficult for practicing engineers to decide for the reliability of laterally loaded piles both in cohesive and cohesionless soils. In this paper, limit state functions and consequent performance functions are obtained for single concrete piles to predict the maximum bending moment, a widely accepted design criterion along with the permissible pile head displacement. Analyses were made utilizing three dimensional finite element method and soil-structure-interaction (SSI) effects were accounted for.

A Parametric Study of Sheet Pile Wall Near the Laterally Loaded Pile (횡방향 재하 말뚝 주변의 널말뚝에 관한 변수연구)

  • Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.35-43
    • /
    • 2012
  • Construction of sheet pile retaining walls in urban and coastal regions has resulted in sheet pile walls in close proximity to laterally loaded pile foundations. However, there is currently little information available in the literature to assist engineers for quantifying the response of sheet pile walls. This study provides a quantitative method for estimating sheet pile wall response due to loads imposed from a nearby laterally loaded pile. Three dimensional finite element analyses using commercial software, ABAQUS, were performed to assess the response of a sheet pile wall and nearby laterally loaded pile. The soils were modeled using Drucker-Prager constitutive model with associated flow rule, and the sheet pile wall and pile foundation were assumed to behave linear elastic. Four parameters were investigated: sheet pile wall bending stiffness, distance from the pile face to the wall, excavation depth in front of the sheet pile wall, and elastic modulus of the soil. Results from the analyses have been used to develop preliminary design charts and simple equations for estimating the maximum horizontal displacement and maximum bending moment in the sheet pile wall.

Analysis of Laterally Loaded Single Piles using Pressuremeter Test (공내재하시험을 이용한 수평하중을 받는 단말뚝의 해석)

  • Lee, Yong-An;Lee, Ju-Hyung;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1051-1060
    • /
    • 2010
  • In this study, the pressuremeter test (PMT) and the standard penetration test (SPT) were performed on the lateral pile loading tests site to evaluate the coefficient of subgrade reaction, which is used for load-deformation behavior analysis of laterally loaded piles by elastic subgrade reaction method. As a result, widely used empirical formulas of the coefficient of subgrade reaction by N values of SPT is evaluated conservatively lateral behavior of piles. While the method of directly used PMT results and evaluation method of the coefficient of subgrade reaction considering deformation moduli of soil and a pile diameter that is able to estimate very similar to actual load-deformation behavior of laterally loaded piles in deformation range of 0.5%-1.0% of a pile diameter.

  • PDF

Prediction For Lateral Behavior of Group file Using P - Multiplier (P - multiplier 방법을 적용한 군말뚝의 수평거동 예측)

  • 김병탁;김영수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.253-260
    • /
    • 2000
  • Pile foundations have been widely used in civil engineering construction for many years. Structures subjected to large lateral loads usually have pile foundations as shallow foundations cannot sometimes support the moments on these structure. The purpose of this paper is to propose the p - multiplier factor (P$\sub$M/) based on the characteristics of behavior of laterally loaded group pile in homogeneous sand. For this, a series of model tests are performed and the composite analytical method proposed by author is used to the propose P$\sub$M/. Based on the model test results of the large number of laterally loaded group piles, p - multiplier factors for homogeneous sand are proposed by back analysis under various condition of soil density, spacing-to-diameter ratio of pile, number of pile, and spacing-to-diameter of pile. P - multiplier approach provides a simple but sufficient tool for characterizing the shadowing group effects of laterally loaded group pile.

  • PDF

Simplified method to design laterally loaded piles with optimum shape and length

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • Optimum shape and length of laterally loaded piles can be obtained with different optimization techniques. In particular, the Fully Stress Design method (FSD) is an optimality condition that allows to obtain the optimum shape of the pile, while the optimum length can be obtained through a transversality condition at the pile lower end. Using this technique, the structure is analysed by finite elements and shaped through the FSD method by contemporarily checking that the transversality condition is satisfied. In this paper it is noted that laterally loaded piles with optimum shape and length have some peculiar characteristics, depending on the type of cross-section, that allow to design them with simple calculations without using finite element analysis. Some examples illustrating the proposed simplified design method of laterally loaded piles with optimum shape and length are introduced.

Development and Evaluation of Technique for Analyzing Laterally Loaded Piles (횡방향력을 받는 말뚝의 해석기법 개발 및 평가)

  • Lee, Seunghyun;Kim, Byoungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.79-84
    • /
    • 2012
  • A technique for analyzing laterally loaded piles was developed in order to accommodate various loading conditions and unique p-y curves obtained from local site. Developed technique was applied to several problems associated with laterally loaded piles to confirm the reliability of the developed technique. And the influences of the parameters considered in the applications on analysis results were investigated. It can be seen that length of the increment of one half of pile diameter is optimum for accuracy of analysis. Problems associated with safe penetration of pile and buckling of a free standing pile were analyzed by the developed technique. Also, analysis results obtained from considering various pile head conditions of a pile which supports retaining wall were compared. The developed technique can be used as a more flexible tool for analyzing laterally loaded piles than commercial program.

Nonlinear response of laterally loaded rigid piles in sand

  • Qin, Hongyu;Guo, Wei Dong
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.679-703
    • /
    • 2014
  • This paper investigates nonlinear response of 51 laterally loaded rigid piles in sand. Measured response of each pile test was used to deduce input parameters of modulus of subgrade reaction and the gradient of the linear limiting force profile using elastic-plastic solutions. Normalised load - displacement and/or moment - rotation curves and in some cases bending moment and displacement distributions with depth are provided for all the pile tests, to show the effect of load eccentricity on the nonlinear pile response and pile capacity. The values of modulus of subgrade reaction and the gradient of the linear limiting force profile may be used in the design of laterally loaded rigid piles in sand.

Finite element analysis for laterally loaded piles in sloping ground

  • Sawant, Vishwas A.;Shukla, Sanjay Kumar
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.59-78
    • /
    • 2012
  • The available analytical methods of analysis for laterally loaded piles in level ground cannot be directly applied to such piles in sloping ground. With the commercially available software, the simulation of the appropriate field condition is a challenging task, and the results are subjective. Therefore, it becomes essential to understand the process of development of a user-framed numerical formulation, which may be used easily as per the specific site conditions without depending on other indirect methods of analysis as well as on the software. In the present study, a detailed three-dimensional finite element formulation is presented for the analysis of laterally loaded piles in sloping ground developing the 18 node triangular prism elements. An application of the numerical formulation has been illustrated for the pile located at the crest of the slope and for the pile located at some edge distance from the crest. The specific examples show that at any given depth, the displacement and bending moment increase with an increase in slope of the ground, whereas they decrease with increasing edge distance.

A Numerical Analysis of Soil-Pile Systems for Pile Load Tests at a Korean Site (국내 말뚝재하시험에 대한 지반-말뚝계의 수치해석)

  • Oh, Se-Boong;Ahn, Tae-Kyong;Choi, Yong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.94-104
    • /
    • 1999
  • In order to evaluate the performance of axially of laterally loaded piles experimentaly, pile load tests can be carried out at the site Otherwise stress analyses or subgrade reaction analyses can solve the problem. In this study, stress analysis using FLAC code and subgrade reaction analyses using load transfer curves recommended by API(1993) were performed consistently on the basis of a result of site investigations, and the result of analyses was compared with the measured. As a result the behavior of pile heads was analyzed accurately for both axially and laterally loaded tests. Furthermore axially transferred loads were calculated appropriately for the measured and axial loads were transferred mainly mainly by the frictional resistance rather than by the tip resistance. Consequently, it can be commented that both analysis methods of soil-pile systems are applicable at teh objective site and that solutions may be more accurate if material properties from the site investigation are more explicit.

  • PDF

A Theoretical Study on the Analytical Solutions for Laterally Loaded Pile (횡방향 하중을 받는 말뚝의 해석해에 대한 이론적 고찰)

  • Lee, Seung-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.111-116
    • /
    • 2011
  • Analytical solutions for laterally loaded piles were derived. Critical pile length which can be considered as the length for behaving as long pile was investigated varying with densities of sandy soils. Lateral behaviors obtained from analytical solution and numerical solution were also investigated. Non-dimensional critical pile lengths obtained from analytical solutions for three types of pile head boundary conditions were 2.3~3.2. By comparing analytical solutions with numerical solutions, distribution of pile deflection and that of moment were similar and it can be seen that pile head deflection obtained by analytical method is conservative. And the values of moments were not too different between analytical solution and numerical solution.