Effect of Tungsten on PtRuW/C Catalysts for Promoting Methanol Electro-oxidation

메탄올 전기산화반응 증진을 위한 PtRuW/C 촉매에서 텅스텐의 효과에 관한 연구

  • Published : 2012.12.10

Abstract

PtRuW/C catalysts were prepared with the different molar ratios of Pt : Ru : W and their compositions were analyzed by energy dispersive X-ray (EDX). The uniform distribution of particles was observed using transmission electron microscopy (TEM). An average crystalline size of 3.5~5.5 nm was calculated based on x-ray diffraction (XRD) data. The electrochemical properties such as electrochemically active surface areas, current densities, specific activities and poisoning rates, were analyzed via CO stripping, linear sweep voltammetry and chronoamperometry. From the analysis, we observed that ternary alloy catalysts, except $PtRu_2W_2/C$, have higher current densities, specific activities and stabilities than those of commercial binary catalysts. Among all in-house catalysts, Pt5Ru4W/C showed the highest specific activity of $121.05mA{\cdot}m^{-2}$ and the lowest poisoning rate of $0.01%{\cdot}s^{-1}$.

PtRuW/C 촉매를 Pt : Ru : W 비를 5 : 4 : 1, 2 : 1 : 1, 1 : 1 : 1, 1 : 2 : 2로 각각 합성하였다. 촉매의 조성은 EDX분석을 통해 이론값과 비슷하다는 것을 확인하였다. TEM분석과 XRD분석으로부터 3.5~5.5 nm의 균일한 입자 크기 및 결정질 분포를 가지고 있음을 확인하였다. 유효표면적, 전류밀도, 고유 활성 및 피독률과 같은 전기화학적 특성은 CO 스트리핑, 선형쓸음 전기량 측정법, 대시간 전류법 등과 같은 방법으로 분석하였다. 이러한 분석으로부터, $PtRu_2W_2/C$를 제외한 촉매는 상업촉매보다 우수한 반응성과 안정성을 가지고 있음을 확인하였다. 이 중 가장 우수한 촉매는 $Pt_5Ru_4W/C$였으며, $121.05mA{\cdot}m^{-2}$의 specific activity와 $0.01%{\cdot}s^{-1}$의 피독률을 보였다.

Keywords

References

  1. M. A. J. Cropper, S. Geiger, and D. M. Jollie, J. Power Sources, 131, 57 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.080
  2. D. Ilic, K. Holl, P. Birke, T. Wohrle, F. Birke-Salam, A. Perner, and P. Haug, J. Power Sources, 155, 72 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.100
  3. H. Nitani, T. Nakagawa, H. Daimon, Y. Kurobe, T. Ono, Y. Honda, A. Koizumi, S. Seino, and T. A. Yamamoto, Appl. Catal. A, 326, 194 (2007). https://doi.org/10.1016/j.apcata.2007.04.018
  4. V. Neburchilov, H. Wang, and J. Zhang, Electrochem. Commun., 9, 1788 (2007). https://doi.org/10.1016/j.elecom.2007.04.001
  5. Y. Morimoto and E. B. Yeager, J. Electroanal. Chem., 444, 95 (1998). https://doi.org/10.1016/S0022-0728(97)00563-9
  6. D. F. A. Koch, D. A. J. Rand, and R. Woods, J. Electroanal. Chem., 70, 73 (1976). https://doi.org/10.1016/S0022-0728(76)80263-X
  7. H. Kita, H. Nakajima, and K. Shimizu, J. Electroanal. Chem., 248, 181 (1988). https://doi.org/10.1016/0022-0728(88)85160-X
  8. G. Samjeske, H. Wang, T. Loffler, and H. Baltruschat, Electrochim. Acta, 47, 3681 (2002). https://doi.org/10.1016/S0013-4686(02)00338-9
  9. R. T. S. Oliveira, M. C. Santos, B. G. Marcussi, P. A. P. Nascente, L. O. S. Bulhões, and E. C. Pereira, J. Electroanal. Chem., 575, 177 (2005). https://doi.org/10.1016/j.jelechem.2004.09.009
  10. N. M. Markoviċ, H. A. Gasteiger, P. N. Ross Jr, X. Jiang, I. Villegas, and M. J. Weaver, Electrochim. Acta, 40, 91 (1995). https://doi.org/10.1016/0013-4686(94)00241-R
  11. F. J. Rodriguez-Nieto, T. Y. Morante-Catacora, and C. R. Cabrera, J. Electroanal. Chem., 571, 15 (2004). https://doi.org/10.1016/j.jelechem.2004.04.008
  12. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. S. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, and S. Sarangapani, J. Phys. Chem. B, 102, 9997 (1998). https://doi.org/10.1021/jp982887f
  13. M. Umeda, H. Ojima, M. Mohamedi, and I. Uchida, J. Power Sources, 136, 10 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.013
  14. J. H. Choi, K. W. Park, I. S. Park, W. H. Nam, and Y. E. Sung, Electrochim. Acta, 50, 787 (2004). https://doi.org/10.1016/j.electacta.2004.01.109
  15. K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. S. Kim, and A. Wieckowski, J. Phys. Chem. B, 106, 1869 (2002). https://doi.org/10.1021/jp013168v
  16. W. B. Wang, G. P. Yin, P. F. Shi, and Y. C. Sun, Electrochem. Solid-State Lett., 9, A13 (2006). https://doi.org/10.1149/1.2133722
  17. J. Liu, J. Cao, Q. Huang, X. Li, Z. Zou, and H. Yang, J. Power Sources, 175, 159 (2008). https://doi.org/10.1016/j.jpowsour.2007.08.100
  18. P. Sivakumar and V. Tricoli, Electrochem. Solid-State Lett., 9, A167 (2006). https://doi.org/10.1149/1.2165709
  19. M. K. Jeon, J. Y. Won, K. R. Lee, and S. I. Woo, Electrochem. Commun., 9, 2163 (2007). https://doi.org/10.1016/j.elecom.2007.06.014
  20. W. C. Choi, J. D. Kim and S. I. Woo, Catal. Today, 74, 235 (2002). https://doi.org/10.1016/S0920-5861(02)00026-3
  21. K. W. Park, J. H. Choi, S. A. Lee, C. H. Pak, H. Chang, and Y. E. Sung, J. Catal., 224, 236 (2004). https://doi.org/10.1016/j.jcat.2004.02.010
  22. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, and T. E. Mallouk, Science, 280, 1735 (1998). https://doi.org/10.1126/science.280.5370.1735
  23. T. J. Schmidt, H. A. Gasteiger, G. D. Stab, P. M. Urban, D. M. Kolb, and R. J. Behm, J. Electrochem. Soc., 145, 2354 (1998). https://doi.org/10.1149/1.1838642
  24. N. M. Markovic and P. N. Ross, Surf. Sci. Rep., 45, 121 (2002).
  25. C. Lamy, A. Lima, V. Le Rhun, C. Coutanceau, and J. M. Leger, J. Power Sources, 105, 283 (2002). https://doi.org/10.1016/S0378-7753(01)00954-5
  26. H. A. Gasteiger, N. M. Markovic, P. N. Ross, and E. J. Cairns, Electrochim. Acta, 39, 1825 (1994). https://doi.org/10.1016/0013-4686(94)85171-9
  27. C. He, H. R. Kunz, and J. M. Fenton, J. Electrochem. Soc., 144, 970 (1997). https://doi.org/10.1149/1.1837515
  28. Z. B. Wang, P. J. Zuo, and G. P. Yin, J. Alloy. Compd., 479, 395 (2009). https://doi.org/10.1016/j.jallcom.2008.12.061
  29. V. Radmiloviċ, H. A. Gasteiger, and P. N. Ross, J. Catal., 154, 98 (1995). https://doi.org/10.1006/jcat.1995.1151
  30. A. S. Arico, S. Srinivasan, and V. Antonucci, Fuel Cells, 1, 133 (2001). https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  31. M. T. M. Koper, J. J. Lukkien, A. P. J. Jansen, and R. A. van Santen, J. Phys. Chem. B, 103, 5522 (1999). https://doi.org/10.1021/jp990520k
  32. W. C. Choi and S. I. Woo, J. Power Sources, 124, 420 (2003). https://doi.org/10.1016/S0378-7753(03)00812-7
  33. E. M. Crabb, R. Marshall, and D. Thompsett, J. Electrochem. Soc., 147, 4440 (2000). https://doi.org/10.1149/1.1394083
  34. J. W. Guo, T. S. Zhao, J. Prabhuram, R. Chen, and C. W. Wong, Electrochim. Acta, 51, 754 (2005). https://doi.org/10.1016/j.electacta.2005.05.056
  35. A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J. M. Leger, and C. Lamy, J. Electroanal. Chem., 444, 41 (1998). https://doi.org/10.1016/S0022-0728(97)00558-5
  36. J. Jiang and A. Kucernak, J. Electroanal. Chem., 543, 187 (2003). https://doi.org/10.1016/S0022-0728(03)00046-9
  37. J. Jiang and A. Kucernak, J. Electroanal. Chem., 520, 64 (2002). https://doi.org/10.1016/S0022-0728(01)00739-2