DOI QR코드

DOI QR Code

SYMPLECTIC DIFFEOMORPHISMS WITH ORBITAL SHADOWING

  • Lee, Keonhee (Department of Mathematics Chungnam University) ;
  • Lee, Manseob (Department of Mathematics Mokwon University)
  • Published : 2012.11.15

Abstract

We show that if a symplectic diffeomorphism has the $C^1$-robustly orbital shadowing property, then the diffeomorphism is Anosov.

Keywords

References

  1. M. Bessa, $C^1$-stably shadowable conservative diffeomorphisms are Anosov, arXiv:1112.5139v1.
  2. M. Bessa and S. Vaz, Stably weakly shadowing sympletic maps are partially hyperbolic, arXiv:1203.5139v1.
  3. V. Horita and A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms, Ann. Ist. H. Poincare Anal. Non Lineaire 23 (2006), 641-661. https://doi.org/10.1016/j.anihpc.2005.06.002
  4. K. Lee and M. Lee, Volume preserving diffeomorphisms with orbital shadowing, preprint.
  5. J. Moser and E. Zehnder, "Notes on dynamicla systems", Courant Lecture Notes in Mathmatics, 12. New York University, Courant Institue of Mathematical Sciences, New York; American mathematical Society, Providence, RI, 2005.
  6. S. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Americ. J. Math. 99 (1975), 1061-1087.
  7. S. Y. Pilyugin, "Shadowing in Dynamical Systems", Lecture Notes in Math. 1706 (Springer Verlag, Berlin, 1999).
  8. O. B. Plamenevskaya, Weak shadowing for two dimensional diffeomorphisms, Vestnik St. Petersburg Univ. Math. 31 (1999), 49-56.
  9. S. Y. Pilyugin, A. A. Rodionova and K. Sakai, Orbital and weak shadowing properties, Discrete Contin. Dynam. Syst. 9 (2003), 287-308.
  10. C. Robinson, Stability thereoms and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 151 (2000), 961-1023.
  11. K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifold, Osaka J. Math. 31 (1994), 373-386.

Cited by

  1. Orbital shadowing property for generic divergence-free vector fields vol.54, 2013, https://doi.org/10.1016/j.chaos.2013.05.013
  2. Symplectic diffeomorphisms with limit shadowing vol.10, pp.02, 2017, https://doi.org/10.1142/S1793557117500681
  3. Divergence-free vector fields with orbital shadowing vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-132
  4. Hamiltonian systems with orbital, orbital inverse shadowing vol.2014, pp.1, 2014, https://doi.org/10.1186/1687-1847-2014-192