References
-
M. Bessa,
$C^1$ -stably shadowable conservative diffeomorphisms are Anosov, arXiv:1112.5139v1. - M. Bessa and S. Vaz, Stably weakly shadowing sympletic maps are partially hyperbolic, arXiv:1203.5139v1.
- V. Horita and A. Tahzibi, Partial hyperbolicity for symplectic diffeomorphisms, Ann. Ist. H. Poincare Anal. Non Lineaire 23 (2006), 641-661. https://doi.org/10.1016/j.anihpc.2005.06.002
- K. Lee and M. Lee, Volume preserving diffeomorphisms with orbital shadowing, preprint.
- J. Moser and E. Zehnder, "Notes on dynamicla systems", Courant Lecture Notes in Mathmatics, 12. New York University, Courant Institue of Mathematical Sciences, New York; American mathematical Society, Providence, RI, 2005.
- S. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Americ. J. Math. 99 (1975), 1061-1087.
- S. Y. Pilyugin, "Shadowing in Dynamical Systems", Lecture Notes in Math. 1706 (Springer Verlag, Berlin, 1999).
- O. B. Plamenevskaya, Weak shadowing for two dimensional diffeomorphisms, Vestnik St. Petersburg Univ. Math. 31 (1999), 49-56.
- S. Y. Pilyugin, A. A. Rodionova and K. Sakai, Orbital and weak shadowing properties, Discrete Contin. Dynam. Syst. 9 (2003), 287-308.
- C. Robinson, Stability thereoms and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 151 (2000), 961-1023.
- K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifold, Osaka J. Math. 31 (1994), 373-386.
Cited by
- Orbital shadowing property for generic divergence-free vector fields vol.54, 2013, https://doi.org/10.1016/j.chaos.2013.05.013
- Symplectic diffeomorphisms with limit shadowing vol.10, pp.02, 2017, https://doi.org/10.1142/S1793557117500681
- Divergence-free vector fields with orbital shadowing vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-132
- Hamiltonian systems with orbital, orbital inverse shadowing vol.2014, pp.1, 2014, https://doi.org/10.1186/1687-1847-2014-192