DOI QR코드

DOI QR Code

ROBUSTLY TRANSITIVE SETS WITH SHADOWING

  • Published : 2012.11.15

Abstract

Let $f$ be a diffeomorphism of a closed $C^{\infty}$ manifold M. We show that $C^1$-generically, if $f$ has the shadowing property on a robustly transitive set, then it is hyperbolic.

Keywords

References

  1. C. Bonatti and L. J. Diaz. Nonhyperbolic transitive dffeomorphisms, Ann. Math. 143 (1996), 357-396. https://doi.org/10.2307/2118647
  2. C. Bonatti, L. J. Diaz, and E. Pujals. A $C^1$-generic dichotomy for diggeomorphsims: weak forms of hyperbolicity or infinitely many sinks or sources. Ann. Math. 158 (2003), 355-418. https://doi.org/10.4007/annals.2003.158.355
  3. C. Bonatti, L. J. Diaz, E. Pujals, and J. Rocha. Robust transitivity and heterodimensional cycles. Asterisque, 297 (2003), 187-222.
  4. L. J. Diaz. Robust nonhyperbolic dynamics and heterodimensional cycles. Ergod. Th. Dynam. Sys. 15 (1995), 291-315.
  5. L. J. Diaz, E. Pujals, and R. Ures. Partial hyperbolicity and robust transitivity. Acta Math. 183 (1999), 1-43. https://doi.org/10.1007/BF02392945
  6. K. Lee, and M. Lee, stably inverse shadowable transitive sets and dominated splitting, Proc. Amer. Math. Soc. 140 (2012), 217-226.
  7. K. Lee, and X. Wen, Shadowable chain transitive sets of $C^1$-generic diffeomorphisms, Bull. Korean Math. Soc. 49 (2012), 21-28.
  8. R. Mane, An ergodic closing lemma, Ann. Math. 116 (1982), 503-540. https://doi.org/10.2307/2007021
  9. S. Y. Pilyugin, Shadowing in Dynamical Systems, Lect. Notes in Math.,Vol. 1706, Springer, 1999.
  10. M. Shub, Topologically transitive diffeomorphisms on $T^4$, Lect. Notes in Math., Vol. 206, Springer, 1971.