References
- O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
- Bao, N.; Feng, X.; Grimes, C. A. J. Nanotechnol. 2012, doi: 10.1155/2012/645931.
- Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2006, 6, 215. https://doi.org/10.1021/nl052099j
- Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69. https://doi.org/10.1021/nl062000o
- Varghese, O. K.; Paulose, M.; Grimes, C. A. Nature Nanotechnol. 2009, 4, 592. https://doi.org/10.1038/nnano.2009.226
- Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Nano Lett. 2008, 8, 3781. https://doi.org/10.1021/nl802096a
- Liu, B.; Aydil, E. S. J. American Chem. Soc. 2009, 131, 3985. https://doi.org/10.1021/ja8078972
- Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331. https://doi.org/10.1557/JMR.2001.0457
- Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. B 2006, 110, 16179. https://doi.org/10.1021/jp064020k
- Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 7235. https://doi.org/10.1021/jp070273h
- Yoriya, S.; Mor, G. K.; Sharma, S.; Grimes, C. A. J. Mater. Chem. 2008, 18, 3332. https://doi.org/10.1039/b802463d
- Yoriya, S.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 13770. https://doi.org/10.1021/jp074655z
- Shankar, K.; Mor, G. K.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 21. https://doi.org/10.1021/jp066352v
- Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nanotechnology 2007, 18, Article No. 065707.
- Varghese, O. K.; Gong, D. W.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18, 156. https://doi.org/10.1557/JMR.2003.0022
- Snaith, H. J.; Schmidt-Mende, L. Adv. Mater. 2007, 19, 3187. https://doi.org/10.1002/adma.200602903
- Thornton, J. A. J. Vac. Sci. Tech. 1974, 11, 666. https://doi.org/10.1116/1.1312732
- Thornton, J. A. J. Vac. Sci. Tech. 1975, 12, 830. https://doi.org/10.1116/1.568682
Cited by
- A facile solution route to deposit TiO2 nanowire arrays on arbitrary substrates vol.6, pp.6, 2014, https://doi.org/10.1039/c3nr05786k
- nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells vol.7, pp.2, 2014, https://doi.org/10.1039/C3EE42167H
- nanorods vol.5, pp.73, 2015, https://doi.org/10.1039/C5RA07525D
- Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells vol.8, pp.21, 2016, https://doi.org/10.1021/acsami.6b01508
- Nanowires and Its Applications in Quantum Dot-Sensitized Solar Cells vol.121, pp.39, 2017, https://doi.org/10.1021/acs.jpcc.7b07795
- Seed-assisted hydrothermal synthesis of aligned single-crystalline anatase nanorods on FTO: synthesis and application vol.29, pp.5, 2014, https://doi.org/10.1088/0268-1242/29/5/055006
- Hydrothermal Fabrication of Hierarchically Anatase TiO 2 Nanowire arrays on FTO Glass for Dye-sensitized Solar Cells vol.3, pp.None, 2012, https://doi.org/10.1038/srep01352
- Deposition of porous titanium oxide thin films as anode material for dye sensitized solar cells vol.114, pp.None, 2015, https://doi.org/10.1016/j.vacuum.2014.10.016
- Single Crystalline-like and Nanostructured TiO2 Photoanodes for Dye Sensitized Solar Cells Synthesized by Reactive Magnetron Sputtering at Glancing Angle vol.122, pp.36, 2012, https://doi.org/10.1021/acs.jpcc.8b07192
- C-14 powered dye-sensitized betavoltaic cells vol.56, pp.52, 2012, https://doi.org/10.1039/d0cc02046j