Tetrahedral Meshing with an Octree-based Adaptive Signed Distance Field

옥트리 기반의 적응적 부호거리장을 이용한 사면체 요소망 생성

  • Received : 2012.02.18
  • Accepted : 2012.02.24
  • Published : 2012.03.01

Abstract

High-quality tetrahedral meshes are crucial for FEM-based simulation of large elasto-plastic deformation and tetrahedral-mesh-based simulation of fluid flow. This paper proposes a volume meshing method that exploits an octree-based adaptive signed distance field to fill the inside of a polygonal object with tetrahedra, of which dihedral angles are good. The suggested method utilizes an octree structure to reduce the total number of tetrahedra by space-efficiently filling an object with graded tetrahedra. To obtain a high-quality mesh with good dihedral angles, we restrict the octree in such a way that any pair of neighboring cells only differs by one level. In octree-based tetrahedral meshing, the signed distance computation of a point to the surface of a given object is a very important and frequently-called operation. To accelerate this operation, we develop a method that computes a signed distance field directly on the vertices of the octree cells while constructing the octree using a top-down approach. This is the main focus of the paper. The suggested tetrahedral meshing method is fast, stable and easy to implement.

양질의 사면체 요소망은 유한요소법 기반의 변형체 시뮬레이션이나 사면체 기반의 유체 시뮬레이션 등에서 필수적이다. 본 논문에서는 옥트리 기반의 적응적 부호거리장을 이용하여 다각형 표면을 가진 물체의 내부를 양질의 이면각을 가진 사면체로 채우는 볼륨 요소망 구성 방법을 제안한다. 옥트리를 이용하여 물체 내부에서 표면까지 다양한 크기의 사면체를 이용하여 생성된 요소의 개수를 줄이며, 옥트리의 인접 셀들 사이의 레벨 차이를 제한하여 양질의 이면각을 가진 요소망을 얻는다. 옥트리 기반의 요소망 생성에 있어서 물체 표면까지의 부호거리를 구하는 것은 매우 중요한 연산이다. 본 논문은 하향식으로 생성한 옥트리의 꼭짓점들에서 부호거리장을 빠르게 구하는데 중점을 두고 있다. 본 논문에서 제안한 사면체 요소망 구성 방법은 실행 시간이 빠르고 안정적이며 구현이 쉬운 장점을 가지고 있다.

Keywords

References

  1. S.-W. Cheng and T. K. Dey, "Quality meshing with weighted delaunay refinement," in Proc. Thirteenth Annual Symposium on Discrete Algorithms, 2002, pp. 137-146.
  2. S. A. Mitchell and S. A. Vavasis, "Quality mesh generation in higher dimensions," SIAM Journal on Computing, vol. 29, no. 4, pp. 1334-1370, 2000. https://doi.org/10.1137/S0097539796314124
  3. B. S. Baker, E. Grosse, and C. S. Rafferty, "Nonobtuse triangulation of polygons," Discrete and Computational Geometry, vol. 3, no. 2, pp. 147-168, 1998.
  4. L. P. Chew, "Guaranteed-quality triangular meshes," Department of Computer Science, Cornell University, Tech. Rep. TR-89-983, 1989.
  5. M. Bern, D. Eppstein, and J. R. Gilbert, "Probably good mesh generation," Journal of Computer and System Sciences, vol. 48, no. 3, pp. 384-409, 1994. https://doi.org/10.1016/S0022-0000(05)80059-5
  6. S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng, "Sliver exudation," Journal of the ACM, vol. 47, no. 5, pp. 883-904, 2000. https://doi.org/10.1145/355483.355487
  7. L. P. Chew, "Guaranteed-quality delaunay meshing in 3D," in Proc. Thirteenth Annual Symposium on Computational Geometry, 1997, pp. 391-393.
  8. X.-Y. Li and S.-H. Teng, "Generating well-shaped delaunay meshes in 3D," in Proc. Twelfth Annual Symposium on Discrete Algorithms, 2001, pp. 28-37.
  9. F. Labelle, "Sliver removal by lattice refinement," in Proc. Twenty-Second Annual Symposium on Computational Geometry, 2006, pp. 347-356.
  10. C. W. Kim, S. H. Park, and M. G. Choi, "Octree-based adaptive tetrahedral meshing," Journal of The Korea Computer Graphics Society, vol. 17, no. 2, pp. 45-53, 2011. https://doi.org/10.15701/kcgs.2011.17.2.45
  11. J. Bærentzen and H. Aænas, "Generating signed distance fields from triangle meshes," Information and Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, Tech. Rep. IMM-TR-2002-21, 2002.
  12. C. H. Sequin, "Procedural spline interpolation in unicubix," in Proc. Third USENIX Computer Graphics Workshop, 1986, pp. 63-83.
  13. G. Thurmer and C. Wuthrich, "Computing vertex normals from polygonal facets," Journal of Graphics Tools, vol. 3, no. 1, pp. 43-46, 1998. https://doi.org/10.1080/10867651.1998.10487487
  14. J. A. Sethian, "A fast marching level set method for monotonically advancing fronts," in Proc. National Academy of Sciences, vol. 93, no. 4, 1996, pp. 1591-1595. https://doi.org/10.1073/pnas.93.4.1591
  15. D. Green and D. Hatch, "Fast polygon-cube intersection testing," in Graphics Gems V. Academic Press Professional Inc., 1995, pp. 375-379.