References
- Bartolini Bussi, M. G. & Mariotti, M. A. (2008). Semiotic mediation in the mathematics class-room. In: L. English, M. Bartolini Bussi, G. A. Jones, R. A. Lesh & D. Tirosh (Eds.), Hand-book of International Research in Mathematics Education 2nd ed. (pp. 746-805). London: Routledge. ME 2009b.00149
- Berry, J. S., & Nyman, M. A. (2003). Promoting students‟ graphical understanding of the calculus, J. Math. Behav. 22(4), 481-497. ME 2004b.01622
- Carlson, M.; Jacobs, S.; Coe, E.; Larsen, S. & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. J. Res. Math. Educ. 33(5), 352-378. ME 2011e.00792 https://doi.org/10.2307/4149958
- Cho, H. H., Kim, H. K., Song, M. H. (2004). The Qualitative Approach to the Graphs of Functions in a Microworld. Presented at the 10th International Congress on Mathematical Education (ICMI-10), Copenhagen, Denmark; July 4-11, 2004. [It also appears: SNU Journal of Education Research 15 (2006), 129-140]
- Drijvers, P. & Trouche, L. (2008). From artifacts to instruments: A theoretical framework behind the orchestra metaphor. In: K. Heid & G. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Vol. 2. Cases and perspectives (pp. 363-392). Charlotte, NC: Information Age.
- Falcade, R.; Laborde, C. & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educ. Stud. Math. 66(3), 317-333. ME 2008a.00392 https://doi.org/10.1007/s10649-006-9072-y
- Healy, L. & Kynigos, C. (2010). Charting the microworld territory over time: Design and construction in mathematics education. ZDM 42(1), 63-76. ME 2010c.00201
- Hegedus, S. & Moreno-Armella, L. (2008). Analyzing the impact of dynamic representations and classroom connectivity on participation, speech and learning. In: L. Radford, G. Schubring & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom and culture (pp. 175-194). Rotterdam, Netherlands: Sense Publishers.
- Kaput, J. J. (1994). Democratizing access to calculus: New routes to old roots. In: A. H. Schoenfeld (Ed.), Mathematics and cognitive science (pp. 77-156). Washington, DC: Mathematical Association of America.
- Mariotti, M, A., & Cerulli, M. (2001). Semiotic mediation for algebra teaching and learning. In: Marja van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, Utrecht, Netherlands; July 12-17, 2001, Volume 3 (pp. 343-350) . ME 2008a.00392 ERIC RD466950 Available from:
- Monk, S. (1992). Students‟ understanding of a function given by a physical model. In: G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy, MAA Notes, 25, 175-193. Washington, DC: Mathematical Association of America.
- Poynter, A. (2004). Effect as a pivot between actions and symbols: the case of vector. Unpublished PhD thesis. Warwick, UK: University of Warwick.
- Rabardel, P. & Beguin, P. (2005). Instrument mediated activity: from subject development to anthropocentric design. Theoretical Issues in Ergonomics Science 6(5), 429-461. https://doi.org/10.1080/14639220500078179
- Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students‟ types of generalization. Math. Think. Learn. 5(1), 37-70. ME 2003b.01526 https://doi.org/10.1207/S15327833MTL0501_02
- Rasmussen, C. (2001). New directions in differential equations: A framework for interpreting students‟ understandings and difficulties. J. Math. Behav. 20(1), 55-87. ME 2003a.00154 https://doi.org/10.1016/S0732-3123(01)00062-1
- Stroup, W. M. (2002). Understanding qualitative calculus: A structural synthesis of learning research. Intern. J. Comput. Math. Learn. 7(2), 167-215. ME 2003b.01564 https://doi.org/10.1023/A:1021147132127
- Swidan, O. & Yerushalmy, M. (2009). Making sense of Accumulation function in a technological environment. In: M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.), Proceedings of the 23rd Conference of the International Group of Psychology of Mathematics Education, Thessaloniki, Greece; July 19-24, 2009. Vol. 4 (pp. 201-208). ERIC RD436403 Available from:
- Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In: G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 179-234). Albany, NY: State University of New York Press. ME 1994f.02496
- Vygotsky, L. S. (1978). Mind and Society: The Development of Higher Psychological Processes. Cambridge: Harvard University Press.
Cited by
- 논리·비판적 사고 신장을 위한 로봇 프로그래밍의 수학교육 적용 방안 vol.53, pp.3, 2012, https://doi.org/10.7468/mathedu.2014.53.3.413