DOI QR코드

DOI QR Code

중·저온 영역 SOFC용 고체 전해질로의 응용을 위한 Bi가 첨가된 아파타이트형 란타늄 실리케이트의 전기적 특성

Electrical Properties of Bi-doped Apatite-type Lanthanum Silicates Materials for SOFCs

  • 김대영 (경상대학교 나노신소재공학부 세라믹공학과) ;
  • 정광호 (경상대학교 나노신소재공학부 세라믹공학과) ;
  • 이성갑 (경상대학교 나노신소재공학부 세라믹공학과)
  • Kim, Dae-Young (Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Jeong, Gwang-Ho (Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Sung-Gap (Department of Ceramic Engineering, Engineering Research Institute, Gyeongsang National University)
  • 투고 : 2012.04.02
  • 심사 : 2012.05.08
  • 발행 : 2012.06.01

초록

$La_{7.33}Bi_2(SiO_4)_6O_2$ specimens were fabricated by standard solid-state synthesis route for solid oxide electrolytes. The calcined powders exhibited uniform particles with a mean particle size of about $28{\mu}m$. The room-temperature structure of $La_{7.33}Bi_2(SiO_4)_6O_2$ specimens was analyzed as hexagonal, space group P63 or P63/m, and the unit cell volume increased with increase a sintering temperature. The specimens sintered at $1,175^{\circ}C$ showed X-ray patterns of homogeneous apatite single phase without the second phase such as $La_2Si_2O_7$ and $La_2SiO_5$. The specimen sintered at $1,175^{\circ}C$ showed the maximum sintered density of 5.49 $g/cm^3$. Increasing the sintering temperature, total conductivities increased, activation energy decreased and the values were $1.98{\times}10^{-5}Scm-1$ and 1.23 eV, respectively.

키워드

참고문헌

  1. H. Arikawa, H. Nishiguchi, T. Ishihara, and Y. Takita, Solid State Ionics, 136, 31 (2000). https://doi.org/10.1016/S0167-2738(00)00386-6
  2. X. Zhang, S. Ohara, R. Maric, H, OKawa, T. Fukui, H. Yoshida, T. inagaki, and K. Miura, Solid State Ionics, 133, 153 (2000). https://doi.org/10.1016/S0167-2738(00)00744-X
  3. M. Hrovat, A. Ahmad-Khanlou, Z. Samarzija, and J. Hole, Mater. Res. Bull., 34, 2027 (1999). https://doi.org/10.1016/S0025-5408(99)00220-2
  4. E. Djurado and M. Labeau, J. Anal. Chem., 365, 277 (1999). https://doi.org/10.1007/s002160051488
  5. S. Nakayama, T. Kageyama, H. Aono, and Y. Sadaoka, J. Mater. Chem., 5, 1801 (1995). https://doi.org/10.1039/jm9950501801
  6. J. S. Lee, M. Lerch, and J. Maier, J. Solid State Chem., 179, 270 (2006). https://doi.org/10.1016/j.jssc.2005.10.012
  7. H. Yoshioka, Journal of the American Ceramic Society, 90, 3099 (2007). https://doi.org/10.1111/j.1551-2916.2007.01862.x
  8. E. Kendrick, M. Islam, and P. Slater, J. Mater. Chem., 17, 3104 (2007). https://doi.org/10.1039/b704426g
  9. M. Higuchi, Y. Masubuchi, S. Nakayama, S. Kikkawa, and K. Kodaira, Solid State Ionics, 174, 73 (2004). https://doi.org/10.1016/j.ssi.2004.05.028
  10. S. Najayama and M. Highchi, J. Mater. Sci. Lett., 20, 913 (2001). https://doi.org/10.1023/A:1010928800227
  11. C. D. Savaniu, J. C. Vazquez, and J. T. S. Irvine, J. Mater. Chem., 15, 598 (2005). https://doi.org/10.1039/b410958a
  12. K. D. Kruer, Ann. Rev. Mater. Res., 33, 333 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  13. J. R. Tolchard, M. S. Islam, and P. R. Slater, J. Mater. Chem., 13, 1956 (2003). https://doi.org/10.1039/b302748c
  14. S. Shin, H. H. Huang, and M. Ishigame, Solid State Ionics, 40, 910 (1990). https://doi.org/10.1016/0167-2738(90)90151-G
  15. A. D. Brailsford and D. K. Hohnke, Solid State Ionics, 11, 133 (1983). https://doi.org/10.1016/0167-2738(83)90050-4