DOI QR코드

DOI QR Code

Dielectric and Piezoelectric Properties of Alkaline Lead-free Piezoceramic-epoxy Composites

알칼리계 무연 압전 세라믹과 에폭시 복합소재의 유전 및 압전 특성

  • Yoon, Chang-Ho (School of Materials Science and Engineering, University of Ulsan) ;
  • Le, Duc Thang (Korea Institute of Ceramic Engineering and Technology, Electronic Component Center) ;
  • Heo, Dae-Jun (School of Materials Science and Engineering, University of Ulsan) ;
  • Ahn, Kyoung-Kwan (of Mechanical Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • 윤창호 (울산대학교 첨단소재공학부) ;
  • 러득탕 (한국세라믹기술원 전자부품센터) ;
  • 허대준 (울산대학교 첨단소재공학부) ;
  • 안경관 (울산대학교 기계공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Received : 2012.04.05
  • Accepted : 2012.05.07
  • Published : 2012.06.01

Abstract

Lead-free piezoelectric ceramic/epoxy composites with '0-3' connectivity were prepared by cold-pressing with a temperature controlled curing method. A ceramic powder with a composition of $(Na_{0.51}K_{0.47}Li_{0.02})(Nb_{0.8}Ta_{0.2})O_3$ was synthesized by a conventional solid state reaction route. The dielectric and piezoelectric properties of ceramic/epoxy composites were characterized as a function of the volume fraction (${\phi}$) of piezoelectric ceramics, which was varied from 70 to 95 vol%. The results indicated that the piezoelectric properties of composites were significantly affected by the volume fraction of ceramics. In terms of the piezoelectric properties, specimens showed the best performance at ${\phi}$= 85 vol%, resulting in the piezoelectric constant $d_{33}$ of 39 pC/N and the figure of merit as a piezoelectric energy harvester ($d_{33}{\cdot}g_{33}$) of 1.24 $pm^2/N$.

Keywords

References

  1. K. K. Shung, J. M. Cannata, and Q. F. Zhou, J. Electroceram., 19, 141 (2007). https://doi.org/10.1007/s10832-007-9044-3
  2. I. Patel, E. Siores, and T. Shah, Sensor. Actuat., A159, 213 (2010).
  3. M. Aureli, C. Prince, M. Porfiri, and S. D. Peterson, Smart Mater. Struct., 19, 015003 (2010). https://doi.org/10.1088/0964-1726/19/1/015003
  4. P. J. Cottinet, D. Guyomar, B. Guiffard, C. Putson, and L. Lebrun, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 774 (2010). https://doi.org/10.1109/TUFFC.2010.1481
  5. L. Lebrun, D. Guyomar, B. Guiffard, P. J. Cottinet, and C. Putson, Sensor. Actuat., A153, 251 (2009).
  6. K. L. Ren, Y. M. Liu, X. C. Geng, H. F. Hofmann, and Q. M. M. Zhang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 631 (2006). https://doi.org/10.1109/TUFFC.2006.1610572
  7. D. Shen, S. Y. Choe, and D. J. Kim, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46, 6755 (2007).
  8. D. Y. Wang, K. Li, and H. L. W. Chan, Appl. Phys. A-Mater. Sci. Process., 80, 1531 (2005). https://doi.org/10.1007/s00339-003-2390-3
  9. J. H. Seol, J. S. Lee, H. N. Ji, Y. P. Ok, G. P. Kong, K. S. Kim, C. Y. Kim, and W. P. Tai, Ceram. Int., 38S, S263 (2012). https://doi.org/10.1016/j.ceramint.2011.04.097
  10. D. A. van den Ende, H. J. van de Wiel, W. A. Groen, and S. van der Zwaag, Smart Mater. Struct., 21, 015011 (2012). https://doi.org/10.1088/0964-1726/21/1/015011
  11. P. L. Tan, D. A. Hall, M. A. Williams, and A. K. Wood, Proceedings of 10th IEEE Inrernational Symposium on Applications of Ferroelectrics, 295 (1996).
  12. W. Thamjaree, W. Nhuapeng, A. Chaipanich, and T. Tunkasirir, Appl. Phys., A81, 1419 (2005).
  13. K. H. Lam and H. L. W. Chan, Compos. Sci. Technol., 65, 1107 (2005). https://doi.org/10.1016/j.compscitech.2004.11.006
  14. A. Petchsuk, W. Supmak, and A. Thanaboonsombut, J. Appl. Polym. Sci., 114, 1048 (2009). https://doi.org/10.1002/app.30636
  15. S. F. Mendes, C. M. Costa, V. Sencadeas, and J. S. Nunes, Appl. Phys., A96, 1037 (2009)
  16. D. T. Le, N. B. Do, D. U. Kim, I. K. Hong, I. W. Kim, and J. S. Lee, Ceram. Int., 38S, S259 (2012).
  17. Y. J. Choi, M. J. Yoo, H. W. Kang, H. G. Lee, S. H. Han, and S. Nahm, Journal of Electroceramics, published online (2012). DOI 10.1007/s10832-012-9706-7
  18. K. H. Lam, X. Wang, and H. L. W. Chan, Compos. Pt., A, Appl. Sci. Manuf., 36, 1595 (2005). https://doi.org/10.1016/j.compositesa.2005.03.007
  19. S. H. Choy, W. K. Li, H. K. Li, K. H. Lam, and H. L. W. Chan, J. Appl. Phys., 102, 114111 (2007). https://doi.org/10.1063/1.2821752
  20. M. S. Kim, S. J. Jeong, I. S. Kim, J. S. Song, and Y. W. Oh, Jpn. J. Appl. Phys., 48, 010204 (2009). https://doi.org/10.1143/JJAP.48.010204
  21. B. M. Jin, D. S. Lee, I. W. Kim, J. H. Kwon, J. S. Lee, J. S. Song, and S. J. Jeong, Ceram. Int., 30 1449 (2004). https://doi.org/10.1016/j.ceramint.2003.12.070
  22. T. Yamada, T. Ueda, and T. Kitayama, J. Appl. Phys., 53, 4328 (1982). https://doi.org/10.1063/1.331211
  23. Z. J. Lim H. Y. Gong, and Y. J. Zhang, Current Appl. Phys., 9, 588 (2009). https://doi.org/10.1016/j.cap.2008.05.005
  24. Y. T. Or, B. Ploss, F. G. Shin, H. L. W. Chan, and C. L. Choy, Integ. Ferroelectr., 47, 19 (2002). https://doi.org/10.1080/713718273
  25. J. S. Hornsby and D. K. Das-gupta, IEEE Trns. Dielectr. Electr. Insul., 11, 19 (2004). https://doi.org/10.1109/TDEI.2004.1266312
  26. S. Priya and D. Inman, Energy Harvesting Technologies (Springer, New York, 2008).
  27. K. H. Lam, X. Wang, and H. L. W. Chan, Compos. Pt., A, Appl. Sci. Manuf., 36, 1595 (2005). https://doi.org/10.1016/j.compositesa.2005.03.007
  28. H. G. Lee and H. G. Kim, J. Appl. Phys., 67, 2024 (1990). https://doi.org/10.1063/1.345584
  29. G. Han, J. Ryu, C. W. Ahn, W. H. Yoon, J. J. Choi, B. D. Hahn, J. W. Kim, J. H. Choi, and D. S. Park, J. AM. Ceram. Soc., published online, DOI: 10.1111/j.1551-2916.2012.05139.x
  30. K. H. Lam, D. M. Lin, Y. Q. Ni, and H. L. Chan, Structural Health Monitoring 8, 283 (2009). https://doi.org/10.1177/1475921708102146
  31. Y. Jeong, J. Hong, B. H. Seo, Y. K. Oh, J. Yoo, and L. Hwang, 2010 IEEE International Symposium on the Applications of Ferroelectrics ISAF (IEEE Xplore, Edinburgh, 2010).
  32. Z. Y. Shen, J. F. Li, R. Chen, Q. Zhou, and K. K. Shung, J. AM. Ceram. Soc., 94, 1346 (2011). https://doi.org/10.1111/j.1551-2916.2011.04508.x