음주로 인한 소프트콘택트렌즈의 단백질 및 지질 침착양 변화

The Change in the Amounts of Proteins and Lipids Deposited on Soft Contact Lens Caused by Drinking

  • 김소라 (서울과학기술대학교 안경광학과) ;
  • 임신규 (서울과학기술대학교 안경광학과) ;
  • 배석천 (서울과학기술대학교 안경광학과) ;
  • 최정현 (서울과학기술대학교 안경광학과) ;
  • 박상희 (가야대학교 안경광학과) ;
  • 박미정 (서울과학기술대학교 안경광학과)
  • Kim, So Ra (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Lim, Shin Gyu (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Bae, Seok Chun (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Choi, Jung Hyun (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Park, Sang Hee (Dept. of Ophthalmic Optics, Kaya University) ;
  • Park, Mijung (Dept. of Optometry, Seoul National University of Science and Technology)
  • 투고 : 2012.04.28
  • 심사 : 2012.06.16
  • 발행 : 2012.06.30

초록

목적: 본 연구에서는 음주에 의해 소프트콘택트렌즈에 침착되는 단백질 및 지질 양의 변화가 있는 지 알아보고자 하였다. 방법: 소프트콘택트렌즈를 착용하는 50명의 남성을 대상으로 콘택트렌즈 착용 상태에서 음주 시 불편감이 초래되었는지 여부를 설문조사하였다. 또한, 안질환이 없는 32명의 성인에게 etafilcon A 재질의 소프트콘택트렌즈를 착용시킨 후 각각 음주(190 mL)시와 비음주시로 나누어 4 시간 후에 렌즈에 침착되는 단백질 및 지질 양을 측정하였다. 결과: 소프트콘택트렌즈를 착용한 상태에서 음주를 할 경우 응답자의 58%가 착용감의 이상을 경험하였다고 하였으며, 뻑뻑함, 시야 흐림, 건조감 등과 같은 증상들을 경험하였다고 답하였다. 음주에 의해 소프트콘택트렌즈의 단백질 침착양은 평균 $59.3{\mu}g/lens$ 증가하였으며, 2배 이상 증가한 경우도 9안에 달하였다. 그러나 소프트콘택트렌즈에 부착되는 단백질의 종류는 라이소자임(lysozyme)으로 변함이 없었다. 음주에 의한 콜레스테롤 양은 비음주시의 85.5%였으며(p=0.25), 메틸 올레인산의 양은 52.6%에 불과하여(p=0.002) 알코올 섭취로 인해 소프트콘택트렌즈에 침착되는 지질양에 변화가 있음을 알 수 있었다. 결론: 음주로 인하여 소프트콘택트렌즈에 침착되는 단백질 및 지질 성분의 조성이 달라졌으며 이러한 변화가 소프트콘택트렌즈 착용 시 음주에 따른 불편함의 원인과도 관련이 있을 것으로 사료된다.

Purpose: In the study, the change of protein and lipid deposits on soft contact lens by drinking was investigated. Methods: Fifty male subjects wearing soft contact lens were surveyed whether they felt any discomfort induced by drinking or not. Further, 32 male subjects who has no ocular disease drank 190 mL alcohol. The protein and lipid deposits on soft contact lens (etafilcon A material) of subjects were measured after 4 hours later and compared with those of non-drinking subject. Results: When subjects drink alcohol with soft contact lens on, 58% of subjects answered they experienced the change of lens awareness such as stiffness, blurry sight, dryness and so on. The protein deposit on soft contact lens increased an average of $59.3{\mu}g/lens$ by drinking and the case of more than double in protein deposit was reached in 9 eyes. However, the protein deposited on soft contact lens was lysozyme which was unchanged by drinking. The amounts of cholesterol and methyl oleate after drinking were 85.5% (p=0.25) and 52.6% (p=0.002) of non-drinking's indicating some change of lipid deposit on soft contact lens by drinking. Conclusions: The results showed the composition of protein and lipid deposited on soft contact lens was changed due to drinking. Thus, it is suggested that wearing soft contact lens when drinking might be one of the reasons to feel discomfort.

키워드

참고문헌

  1. Boschloo L, Vogelzangs N, Licht CM, Vreeburg SA, Smit JH, van den Brink W, Veltman DJ, de Geus EJ, Beekman AT, Penninx BW. Heavy alcohol use, rather than alcohol dependence, is associated with dysregulation of the hypothalamic- pituitary-adrenal axis and the autonomic nervous system. Drug Alcohol Depend. 2011;116(1-3):170-176. https://doi.org/10.1016/j.drugalcdep.2010.12.006
  2. Mehta AJ, Guidot DM. Alcohol abuse, the alveolar macrophage and pneumonia. Am J Med Sci. 2012;343(3):244-247. https://doi.org/10.1097/MAJ.0b013e31823ede77
  3. Lieb M, Palm U, Hock B, Schwarz M, Domke I, Soyka M. Effects of alcohol consumption on iron metabolism. Am J Drug Alcohol Abuse. 2011;37(1):68-73. https://doi.org/10.3109/00952990.2010.535584
  4. Ballard HS. The hematological complications of alcoholism. Alcohol Health Res World. 1997;21(1):42-52.
  5. Gueguen S, Pirollet P, Leroy P, Guilland JC, Arnaud J, Paille F, Siest G, Visvikis S, Hercberg S, Herbeth B. Changes in serum retinol, alpha-tocopherol, vitamin C, carotenoids, xinc and selenium after micronutrient supplementation during alcohol rehabilitation. J Am Coll Nutr. 2003;22(4):303-310. https://doi.org/10.1080/07315724.2003.10719308
  6. Guo R, Ren J. Alcohol and acetaldehyde in public health: from marvel to menace. Int J Environ Res Public Health. 2010;7(4):1285-1301. https://doi.org/10.3390/ijerph7041285
  7. Lieber CS. Biochemical factors in alcoholic liver disease. Semin Liver Dis. 1993;13(2):136-153. https://doi.org/10.1055/s-2007-1007345
  8. Frieden TR, Ozick L, McCord C, Nainan OV, Workman S, Comer G, Lee TP, Byun KS, Patel D, Henning KJ. Chronic liver disease in central Harlem: the role of alcohol and viral hepatitis. Hepatology. 1999;29(3):883-888. https://doi.org/10.1002/hep.510290308
  9. Pontes H, Duarte JA, de Pinho PG, Soares ME, Fernandes E, Dinis-Oliveira RJ, Sousa C, Silva R, Carmo H, Casal S, Remio F, Carvalho F, Bastos ML. Chronic exposure to ethanol exacerbates MDMA-induced hyperthermia and exposes liver to severe MDMA-induced toxicity in CD1 mice. Toxicology. 2008; 252(1-3):64-71. https://doi.org/10.1016/j.tox.2008.07.064
  10. Frey WH, DeSota-Johnson D, Hoffman C, McCall JT. Effect of stimulus on the chemical composition of human tears. Am J Ophthalmol. 1981;92(4):559-567.
  11. Gakhramanov FS, Kerimov KT, Dzhafarov AI. Use of natural antioxidants for the correction of changes in general and local parameters of lipid peroxidation and antioxidant defense system during experimental eye burn. Bull Exp Biol Med. 2006;142(6):696-699. https://doi.org/10.1007/s10517-006-0454-z
  12. Grumetto L, Cennamo G, Del Prete A, La Rotonda MI, Barbato F. Pharmacokinetics of cetirizine in tear fluid after a single oral dose. Clin Pharmacokinetics. 2002;41(7):525-531. https://doi.org/10.2165/00003088-200241070-00006
  13. Altinors DD, Aka S, Akova YA, Bileziki B, Goto E, Dogru M, Tsubota K. Smoking associated with damage to the lipid layer of the ocular surface. Am J Ophthalmol. 2006;141(6):1016-1021. https://doi.org/10.1016/j.ajo.2005.12.047
  14. Giles HG, Sandrin S, Saldivia V, Israel Y. Noninvasive estimation of blood alcohol concentrations: ethanol vapor above the eye. Alcohol Clin Exp Res. 1988;12(2):255-258. https://doi.org/10.1111/j.1530-0277.1988.tb00190.x
  15. Zhao Z, Naduvilath T, Flanagan JL, Carnt NA, Wei X, Diec J, Evans V, Willcox MD. Contact lens deposits, adverse responses, and clinical ocular surface parameters. Optom Vis Sci. 2010;87(9):669-674. https://doi.org/10.1097/OPX.0b013e3181ea1848
  16. Subbaraman LN, Borazjani R, Zhu H, Zhao Z, Jones L, Willcox MD. Influence of protein deposition on bacterial adhesion to contact lenses. Optom Vis Sci. 2011;88(8):959-966. https://doi.org/10.1097/OPX.0b013e31821ffccb
  17. Cui L, Shen M, Wang MR, Wang J. Micrometer-scale contact lens movements imaged by ultrahigh-resolution optical coherence tomography. Am J Ophthalmol. 2012;153(2):275-283. https://doi.org/10.1016/j.ajo.2011.06.023
  18. Alonso-Caneiro D, Iskander DR, Collins MJ. Tear film surface quality with soft contact lenses using dynamicarea high-speed videokeratoscopy. Eye Contact Lens. 2009;35(5):227-231. https://doi.org/10.1097/ICL.0b013e3181b3350f
  19. Santodomingo-Rubido J, Wolffsohn JS, Gilmartin B. Changes in ocular physiology, tear film characteristics, and symptomatology with 18 months silicone hydrogel contact lens wear. Optom Vis Sci. 2006;83(2):73-81. https://doi.org/10.1097/01.opx.0000200681.23663.48
  20. Park M, Cho GT, Shin SH, Lee HS, Kim DS. The diameter and base curve changes of soft contact lens by protein deposition. J Korean Oph Opt Soc. 2005;10(3):165-171.
  21. Park M, Kwon MJ, Hyun SH, Kim DS. The adsorption pattern of protein to the soft contact lens and its effect on the visible light transmission and the contact angle. J Korean Oph Opt Soc. 2004;9(1):53-68.
  22. Choi JY, Park JS, Kim SR, Park M. The change in refractive powers of soft contact lenses caused by the deposition of tear proteins. J Korean Oph Opt Soc. 2011;16(4):383-390.
  23. Chang SW, Chang CJ. Delayed tear clearance in contact lens associated papillary conjunctivitis. Curr Eye Res. 2011;22(4):253-257.
  24. Boost MV, Cho P. Microbial flora of tears of orthokeratology patients, and microbial contamination of contact lenses and contact lens accessories. Optom Vis Sci. 2005;82(6):451-458. https://doi.org/10.1097/01.opx.0000168587.72893.ec
  25. Lee YJ, Park SI, Lee HS, Park M. The change of blink rate by wearing soft contact lens. J Korean Oph Opt Soc. 2006;11(3):173-179.
  26. Keay L, Jalbert I, Sweeney DF, Holden BA. Microcysts: clinical significance and differential diagnosis. Optometry. 2001;72(7):452-460.
  27. Morgan PB, Efron N, Woods CA. An international survey of contact lens prescribing for presbyopia. Clin Exp Optom. 2011;94(1):87-92. https://doi.org/10.1111/j.1444-0938.2010.00524.x
  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275.
  29. Park YM, Park CS, Lee HS, Park M, The effect of UV blocking lens on the denaturation of RNase A induced by UV-A. J Korean Oph Opt Soc. 2007;12(1):9-15.
  30. Kim MH, Park M. The difference of the cleaning and wettability-maintaining efficacy of lens care solution to RGP lens. J Korean Oph Opt Soc. 2006;11(1):27-34.
  31. Hogben CA. A practical and simple equivalent for student's T test of statistical significance. J Lab Clin Med. 1964;64:815-819.
  32. Binder PS. Complications associated with extended wear of soft contact lenses. Ophthalmology. 1979;86(6):1093-1101.
  33. Holbrook IB, Leaver AG. A procedure to increase the sensitivity of staining by Coomassie brilliant blue G250- perchloric acid solution. Anal Biochem. 1976;75(2):634-636. https://doi.org/10.1016/0003-2697(76)90118-4
  34. Luensmann D, Jones L. Protein deposition on contact lenses: the past, the present, and the future. Cont Lens Anterior Eye. 2012;35(2):53-64. https://doi.org/10.1016/j.clae.2011.12.005
  35. Farris RL. Tear analysis in contact lens wearers. Trans Am Ophthalmol Soc. 1985;83(2):501-545.
  36. Rasmussen DD, Wilkinson CW, Raskind MA. Chronic daily ethanol and withdrawal: 6. Effects on rat sympathoadrenal activity during abstinence. Alcohol. 2006;38(3): 173-177. https://doi.org/10.1016/j.alcohol.2006.06.007
  37. Bromberg BB. Autonomic control of lacrimal protein secretion. Invest Ophthalmol Vis Sci. 1981;20(1):110-116.
  38. Zoukhri D, Kublin CL. Impaired neurotransmitter release from lacrimal and salivary gland nerves of a murine model of Sjgren's syndrome. Invest Ophthalmol Vis Sci. 2001;42(5):925-932.
  39. Roberts KE. Mechanism of dehydration following alcohol ingestion. Arch Intern Med. 1963;112(2):154-157. https://doi.org/10.1001/archinte.1963.03860020052002
  40. Hart DE, Lane BC, Josephson JE, Tisdale RR, Gzik M, Leahy R, Dennis R. Spoilage of hydrogel contact lenses by lipid deposits. Tear-film potassium depression, fat, protein, and alcohol consumption. Ophthalmology. 1987;94(10):1315-1321.
  41. Goldstein DB. Physical dependence on ethanol: its relation to tolerance. Drug Alcohol Depend 1979;4(1-2):33-42. https://doi.org/10.1016/0376-8716(79)90039-5