각막 후면 지형 측정을 위한 새로운 방법의 신뢰도 분석 및 평가

Validating a New Approach to Quantify Posterior Corneal Curvature in Vivo

  • 윤정호 (춘해보건대학교 안경광학과) ;
  • ;
  • ;
  • Yoon, Jeong Ho (Dept. of Optometry, Choonhae College of Health Science) ;
  • Avudainayagam, Kodikullam (School of Optometry and Vision Science, University of New South Wales) ;
  • Avudainayagam, Chitralekha (School of Optometry and Vision Science, University of New South Wales) ;
  • Swarbrick, Helen A. (School of Optometry and Vision Science, University of New South Wales)
  • 투고 : 2012.04.26
  • 심사 : 2012.06.16
  • 발행 : 2012.06.30

초록

목적: 본 연구는 각막 전면의 지형과 각막의 두께를 이용하여 각막 후면 정점 곡률과 asphericity(Q)를 측정하기 위해 고안된 새로운 방법의 신뢰도 평가를 위해서 시행 되었다. 방법: 각막 후면의 정점 곡률 및 Q는 Medmont E300 corneal topographer로 측정한 각막 전면의 지형 data와 Holden-Payor optical pachometer로 측정한 각막 수평 경선의 두께 data를 이용하여 계산 되었다. 정확한 각막 두께를 계산 하기위하여 각막 전면 측정 위치의 곡률반경과 각막의 겉보기 두께로부터 각막의 실제 두께를 계산 할 때 정확한 방정식을 이용하였으며, 이는 선행 연구와 구별되는 점이다. 그리고 각막 전면과 후면의 지형은 각막 전면의 지형 data와 계산된 각막 후면의 좌표를 best fit 알고리즘을 이용하여 계산 되었다. 각막 후면의 지형 측정의 신뢰도는 10개의 polymethyl methacrylate(PMMA) lens와 성인 5명의 각막을 측정 하여 평가 하였다. 결과: 10개의 PMMA lens를 이용한 평가에서는 후면 정점 곡률과 후면 Q의 mean absolute accuracy(${\pm}SD$)는 각각 $0.053{\pm}0.044mm$(95% 신뢰구간(CI) -0.033~0.139)와 $0.10{\pm}0.10$(95% CI -0.10~0.31)이였다. 그리고 5명의 각막을 이용한 평가에서의 각막 후면 정점 곡률과 후면 Q의 mean absolute repeatability coefficient(${\pm}SD$)는 각각 $0.07{\pm}0.06mm$(95% CI -0.05~0.19)와 $0.09{\pm}0.07$(95% CI -0.05~0.23) 이였다. 결론: 새로운 방법을 이용하여 신뢰할 수 있는 각막 후면의 지형(정점 곡률과 Q)을 계산 할 수 있었다. 이러한 새로운 방법은 살아있는 인체 각막의 정확한 후면 지형 계산에 적용 될 수 있다.

Purpose: Validating a new research method to determine posterior corneal curvature and asphericity(Q) in vivo, based on measurements of anterior corneal topography and corneal thickness. Methods: Anterior corneal topographic data, derived from the Medmont E300 corneal topographer, and total corneal thickness data measured along the horizontal corneal meridian using the Holden-Payor optical pachometer, were used to calculate the anterior and posterior corneal apical radii of curvature and Q. To calculate accurate total corneal thickness the local radius of anterior corneal curvature, and an exact solution for the relationship between real and apparent thickness were taken into consideration. This method differs from previous approach. An elliptical curve for anterior and posterior cornea were calculated by using best fit algorism of the anterior corneal topographic data and derived coordinates of the posterior cornea respectively. For validation of the calculations of the posterior corneal topography, ten polymethyl methacrylate (PMMA) lenses and right eyes of five adult subjects were examined. Results: The mean absolute accuracy (${\pm}$standard deviation(SD)) of calculated posterior apical radius and Q of ten PMMA lenses was $0.053{\pm}0.044mm$ (95% confidence interval (CI) -0.033 to 0.139), and $0.10{\pm}0.10$ (95% CI -0.10 to 0.31) respectively. The mean absolute repeatability coefficient (${\pm}SD$) of the calculated posterior apical radius and Q of five human eyes was $0.07{\pm}0.06mm$ (95% CI -0.05 to 0.19) and $0.09{\pm}0.07$ (95% CI -0.05 to 0.23), respectively. Conclusions: The result shows that acceptable accuracy in calculations of posterior apical radius and Q was achieved. This new method shows promise for application to the living human cornea.

키워드

참고문헌

  1. Maldonado MJ, Nieto JC, Dez-Cuenca M, Piero DP. Repeatability and reproducibility of posterior corneal curvature measurements by combined scanning-slit and placido-disc topography after LASIK. Ophthalmology. 2006;113(11):1918-1926. https://doi.org/10.1016/j.ophtha.2006.05.053
  2. Chen D, Lam AK. Intrasession and intersession repeatability of the Pentacam system on posterior corneal assessment in the normal human eye. J Cataract Refract Surg. 2007;33(3):448-454. https://doi.org/10.1016/j.jcrs.2006.11.008
  3. Chen D, Lam AK. Reliability and repeatability of the Pentacam on corneal curvatures. Clin Exp Optom. 2009;92(2):110-118. https://doi.org/10.1111/j.1444-0938.2008.00336.x
  4. Piero DP, Gonzlez CS, AliJL. Intraobserver and interobserver repeatability of curvature and aberrometric measurements of the posterior corneal surface in normal eyes using Scheimpflug photography. J Cataract Refract Surg. 2009;35(1):113-120. https://doi.org/10.1016/j.jcrs.2008.10.010
  5. Kawamorita T, Uozato H, Kamiya K, Bax L, Tsutsui K, Aizawa D, Shimizu K. Repeatability, reproducibility, and agreement characteristics of rotating Scheimpflug photography and scanning-slit corneal topography for corneal power measurement. J Cataract Refract Surg. 2009;35(1):127-133. https://doi.org/10.1016/j.jcrs.2008.10.019
  6. Wang L, Shirayama M, and Koch DD. Repeatability of corneal power and wavefront aberration measurements with a dual-Scheimpflug Placido corneal topographer. J Cataract Refract Surg. 2010;36(3):425-430. https://doi.org/10.1016/j.jcrs.2009.09.034
  7. Savini G, Carbonelli M, Barboni P, Hoffer KJ. Repeatability of automatic measurements performed by a dual Scheimpflug analyzer in unoperated and post-refractive surgery eyes. J Cataract Refract Surg. 2011;37(2):302-309. https://doi.org/10.1016/j.jcrs.2010.07.039
  8. Oliveira CM, Ribeiro C, Franco S. Corneal imaging with slit-scanning and Scheimpflug imaging techniques. Clin Exp Optom. 2011;94(1):33-42. https://doi.org/10.1111/j.1444-0938.2010.00509.x
  9. Hashemi H, Mehravaran S. Corneal changes after laser refractive surgery for myopia: Comparison of Orbscan II and Pentacam findings. J Cataract Refract Surg. 2007;33(5):841-847. https://doi.org/10.1016/j.jcrs.2007.01.019
  10. Salouti R, Nowroozzadeh MH, Zamani M, Fard AH, Niknam S. Comparison of anterior and posterior elevation map measurements between 2 Scheimpflug imaging systems. J Cataract Refract Surg. 2009;35(5):856-862. https://doi.org/10.1016/j.jcrs.2009.01.008
  11. Quisling S, Sjoberg S, Zimmerman B, Goins K, Sutphin J. Comparison of Pentacam and Orbscan IIz on posterior curvature topography measurements in keratoconus eyes. Ophthalmology. 2006;113(9):1629-1632. https://doi.org/10.1016/j.ophtha.2006.03.046
  12. Lowe RF, Clark BA. Posterior corneal curvature. Correlations in normal eyes and in eyes involved with primary angle-closure glaucoma. Br J Ophthalmol. 1973;57(7):464-470. https://doi.org/10.1136/bjo.57.7.464
  13. Royston JM, Dunne MC, Barnes DA. Measurement of the posterior corneal radius using slit lamp and Purkinje image techniques. Ophthalmic Physiol Opt. 1990;10:385-388. https://doi.org/10.1111/j.1475-1313.1990.tb00886.x
  14. Van der Heijde Rob GL, Dubbelman M, Weeber HA. The shape of the back surface of the cornea. South African Optom. 2003;62(3):132-134.
  15. Hockwin O, Weigelin E, Laser H, Dragomirescu V. Biometry of the anterior eye segment by Scheimpflug photography. Ophthalmic Res. 1983;15(2):102-108. https://doi.org/10.1159/000265242
  16. Dubbelman M, Van der Heijde GL. The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox. Vision Res. 2001;41(14):1867-1877. https://doi.org/10.1016/S0042-6989(01)00057-8
  17. Dunne MC, Royston JM, Barnes DA. Normal variations of the posterior corneal surface. Acta Ophthalmol. 1992;70(2):255-261.
  18. Rivett AG, Ho A. The posterior corneal topography. Invest Ophthalmol Vis Sci(ARVO abstract). 1991;32(suppl):1001.
  19. Patel S, Marshall J, Fitzke FW. Shape and radius of posterior corneal surface. Refract Corneal Surg. 1993;9(3):173-181.
  20. Brennan NA, Smith G, Macdonald JA, Bruce AS. Theoretical principles of optical pachometry. Ophthalmic Physiol Opt. 1989;9(3):247-253. https://doi.org/10.1111/j.1475-1313.1989.tb00902.x
  21. Bennett AG. Aspherical contact lens surfaces. Ophthalmic Optician. 1968;8(5):1037-1040.
  22. Mandell RB, St Helen R. Mathematical model of the corneal contour. Br J Physiol Opt. 1971;26(3):183-187.
  23. Iskander DR, Collins MJ, Read SA. Extrapolation of central corneal topography into the periphery. Eye Contact Lens. 2007;33(6):293-299. https://doi.org/10.1097/ICL.0b013e3180319cc2
  24. Bennett AG. The calibration of keratometry. Optician. 1966;151(3913):317-322.
  25. Bennett AG. Aspherical contact lens surfaces. Ophthalmic Optician. 1968;30(8):1297-1311.
  26. Thomas GB. Calculus and Analytic Geometry, 4th ed. Massachusetts: Addison-Wesley Publishing Company, 1969;474.
  27. Holden BA, Polse KA, Fonn D, Mertz GW. Effects of cataract surgery on corneal function. Invest Ophthalmol Vis Sci. 1982;22(3):343-350.
  28. Holden BA, Sweeney DF, Vannas A, Nilsson KT, Efron N. Effects of long term extended contact lens wear on the human cornea. Invest Ophthalmol Vis Sci. 1985;26(11):1489-1501.
  29. Alharbi A, Swarbrick HA. The effects of overnight orthokeratology lens wear on corneal thickness. Invest Ophthalmol Vis Sci. 2003;44(6):2518-2523. https://doi.org/10.1167/iovs.02-0680
  30. Alharbi A, La Hood D, Swarbrick HA. Overnight orthokeratology lens wear can inhibit the central stromal edema response. Invest Ophthalmol Vis Sci. 2005;46(7):2334-2340. https://doi.org/10.1167/iovs.04-1162
  31. Vasudevan B, Simpson TL, Sivak JG. Regional variation in the refractive-index of the bovine and human cornea. Optom Vis Sci. 2008;85(10):977-981. https://doi.org/10.1097/OPX.0b013e3181886fa5
  32. Patel S, Marshall J, Fitzke FW 3rd. Refractive index of the human corneal epithelium and stroma. J Refract Surg. 1995;11(2):100-105.
  33. Guillon M, Lydon DP, Wilson C. Corneal topography: a clinical model. Ophthalmic Physiol Opt. 1986;6(1):47-56. https://doi.org/10.1111/j.1475-1313.1986.tb00699.x
  34. Arner RS, Rengstorff RH. Error analysis of corneal thickness measurements. Am J Optom Arch Am Acad Optom. 1972;49(10):862-865. https://doi.org/10.1097/00006324-197210000-00008
  35. Chan-Ling T, Pye DC. Pachometry: clinical and scientific applications In: Ruben M, Guillon M, 1st ed. Contact Lens Practice. London: Chapman & Hall, 1994;407-435.
  36. Olsen T, Nielsen CB, Ehlers N. On the optical measurement of corneal thickness I. Optical principle and sources of error. Acta Ophthalmol. 1980;58(5):760-766.
  37. Hirji NK, Larke JR. Thickness of human cornea measured by topographic pachometry. Am J Optom Physiol Opt. 1978;55(2):97-100. https://doi.org/10.1097/00006324-197802000-00006
  38. Soni PS, Nguyen TT, Bonanno JA. Overnight orthokeratology: visual and corneal changes. Eye Contact Lens. 2003;29(3):137-145. https://doi.org/10.1097/01.ICL.0000072831.13880.A0
  39. Nichols JJ, Marsich MM, Nguyen M, Barr JT, Bullimore MA. Overnight orthokeratology. Optom Vis Sci. 2000;77(5):252-259. https://doi.org/10.1097/00006324-200005000-00012
  40. El Hage S, Leach NE, Miller W, Prager TC, Marsack J, Parker K, Minavi A, Gaume A. Empirical advanced orthokeratology through corneal topography: the University of Houston clinical study. Eye Contact Lens. 2007;33(5):224-235. https://doi.org/10.1097/ICL.0b013e318065b0dd
  41. Garner LF, Owens H, Yap MK, Frith MJ, Kinnear RF. Radius of curvature of the posterior surface of the cornea. Optom Vis Sci. 1997;74(7):496-498. https://doi.org/10.1097/00006324-199707000-00016
  42. Dunne MC, Royston JM, Barnes DA. Posterior corneal surface toricity and total corneal astigmatism. Optom Vis Sci. 1991;68(9):708-710. https://doi.org/10.1097/00006324-199109000-00006
  43. Lam AK, Douthwaite WA. A pilot study on the measurement of central posterior corneal radius in Hong Kong Chinese using Purkinje image technique. Ophthalmic Physiol Opt. 1997;17(1):68-74. https://doi.org/10.1111/j.1475-1313.1997.tb00526.x