References
- Belkin, M., Sindhwani, V. and Niyogi, P. (2006). Manifold regularization; A geometric framework for learning from examples. Journal of Machine Learning Research, 7, 2329-2434.
- Chapelle, O., Zien, A. and Scholkopf, B. (2006). Semi-supervised learning, MIT press, Boston.
- Cortes, C. and Mohri, M. (2007). On transductive regression. Advances in Neural Information Processing System, 19, 305-312.
- Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications, Chapman & Hall/CRC, London.
- Hady, M. F. A. (2011). Semi-supervised learning with committees, Sudwestdeutscher Verlag, fur Hochschuischriften, Deutschland.
- Laerty, J. and Wasserman, L. (2008). Statistical analysis of semi-supervised regression. In Advances in Neural Information Processing Systems, 20, 801-808.
- Niyogi, P. (2008). Manifold regularization and semi-supervised learning: Some theoretical analyses, Technical Report TR-2008-01, CS Dept, U. of Chicago.
- Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications, 9, 141-142. https://doi.org/10.1137/1109020
- Sindhwani, V., Niyogi, P. and Belkin, M. (2005). Beyond the point cloud: from transductive to semisupervised learning. In ICML05, 22nd International Conference on Machine Learning, 824 - 831.
- Singh, A., Nowak, R. and Zhu, X. (2008). Unlabeled data: Now it helps, now it doesn't. In Advances in Neural Information Processing Systems, 21, 1513-1520.
- Vapnik, V. (1998). The nature of statistical learning theory, Springer-Verlag, New York.
- Watson, G. S. (1964). Smooth regression analysis. Sankhya, 26, 359-372.
- Wang, M., Hua, X., Song, Y., Dai, L. and Zhang, H. (2006). Semi-supervised kernel regression. In Proceeding of the Sixth IEEE International Conference on Data Mining, 1130-1135.
- Xu, S., An. X., Qiao, X., Zhu, L. and Li, L. (2011) Semisupervised least squares support vector regression machines. Journal of Information & Computational Science, 8, 885-892.
- Xu, Z., King, I. and Lyu, M. R. (2010). More than semi-supervised learning, LAP LAMBERT Academic Publishing, London.
- Zhou, Z. H. and Li, M. (2005). Semi-supervised regression with co-training. In Proceeding of the 19th International Joint Conference in Articial Intelligence, 908-913.
- Zhu, X. (2005). Semi-supervised learning literature survey, Technical Report 1530, Department of Computer Sciences, University of Wisconsin, Madison.
- Zhu, X. and Goldberg, A. (2009). Introduction to semi-supervised learning, Morgan & Claypool, London.
Cited by
- Smoothing parameter selection in semi-supervised learning vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.993
- A study on semi-supervised kernel ridge regression estimation vol.24, pp.2, 2013, https://doi.org/10.7465/jkdi.2013.24.2.341
- Semisupervised support vector quantile regression vol.26, pp.2, 2015, https://doi.org/10.7465/jkdi.2015.26.2.517
- A transductive least squares support vector machine with the difference convex algorithm vol.25, pp.2, 2014, https://doi.org/10.7465/jkdi.2014.25.2.455
- Semi-supervised regression based on support vector machine vol.25, pp.2, 2014, https://doi.org/10.7465/jkdi.2014.25.2.447