• 제목/요약/키워드: semi-supervised regression

검색결과 6건 처리시간 0.016초

Semi-supervised regression based on support vector machine

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권2호
    • /
    • pp.447-454
    • /
    • 2014
  • In many practical machine learning and data mining applications, unlabeled training examples are readily available but labeled ones are fairly expensive to obtain. Therefore semi-supervised learning algorithms have attracted much attentions. However, previous research mainly focuses on classication problems. In this paper, a semi-supervised regression method based on support vector regression (SVR) formulation that is proposed. The estimator is easily obtained via the dual formulation of the optimization problem. The experimental results with simulated and real data suggest superior performance of the our proposed method compared with standard SVR.

준지도 커널능형회귀모형에 관한 연구 (A study on semi-supervised kernel ridge regression estimation)

  • 석경하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.341-353
    • /
    • 2013
  • 데이터마이닝과 기계학습의 응용분야에서는 라벨 없는 자료를 이용하는 연구가 많이 진행되고 있다. 이러한 연구는 분류문제에 집중되었다가 최근에 회귀분석문제로 관심이 모아지고 있다. 본 연구에서는 커널능형회귀모형 형태의 준지도 회귀분석 방법을 제시한다. 제안된 방법은 기존의 전환적 방법과는 달리 라벨 없는 자료의 라벨을 추정하는 과정을 필요로 하지 않기 때문에 선택해야 할 모수의 수도 적고, 계산과정도 단순할 뿐 아니라 일반화에 강점이 있다. 모의실험과 실제 자료 분석을 통해 제안된 방법이 라벨 없는 자료를 잘 활용하여 라벨 있는 자료만 이용하는 방법보다 더 우수한 추정을 하는 것을 볼 수 있었다.

Study on semi-supervised local constant regression estimation

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권3호
    • /
    • pp.579-585
    • /
    • 2012
  • Many different semi-supervised learning algorithms have been proposed for use wit unlabeled data. However, most of them focus on classification problems. In this paper we propose a semi-supervised regression algorithm called the semi-supervised local constant estimator (SSLCE), based on the local constant estimator (LCE), and reveal the asymptotic properties of SSLCE. We also show that the SSLCE has a faster convergence rate than that of the LCE when a well chosen weighting factor is employed. Our experiment with synthetic data shows that the SSLCE can improve performance with unlabeled data, and we recommend its use with the proper size of unlabeled data.

준지도 학습의 모수 선택에 관한 연구 (Smoothing parameter selection in semi-supervised learning)

  • 석경하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.993-1000
    • /
    • 2016
  • 반응 값이 없는 자료를 지도학습 (supervised learning)에 사용하는 준지도 학습 (semi-supervised learning)은 분류에 더 많은 관심을 갖는다. 본 연구는 준지도학습을 회귀분석에 적용하는 준지도 회귀함수 추정법을 제안한다. 제안된 방법은 기존의 방법과 형태는 같지만 반응 값이 있는 자료와 없는 자료의 주변분포를 다르게 가정하고, 서로 다른 평활계수를 사용하는 등 좀 더 일반화된 형태를 가진다. 제안된 추정법의 점근분포를 계산하고 점근평균제곱오차를 최소화하는 최적의 평활계수가 가지는 조건을 찾는다. 설명변수의 주변분포에 대한 추정이 잘 이루이지고, 반응 값이 있는 자료와 없는 자료의 크기에 대한 조건을 적절하게 통제할 수 있고, 그리고 평활계수가 적절하게 선택될 수 있다면 라벨없는 자료가 회귀분석에서도 도움을 줄 수 있음을 보인다. 그리고 준지도 분류에서 사용하는 것처럼 반응 값이 없는 자료의 초기추정은 작은 값을 가지는 평활계수를 사용하여 과적합 (overfitting)되도록 하는 것이 좋음을 증명한다.

Patch based Semi-supervised Linear Regression for Face Recognition

  • Ding, Yuhua;Liu, Fan;Rui, Ting;Tang, Zhenmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.3962-3980
    • /
    • 2019
  • To deal with single sample face recognition, this paper presents a patch based semi-supervised linear regression (PSLR) algorithm, which draws facial variation information from unlabeled samples. Each facial image is divided into overlapped patches, and a regression model with mapping matrix will be constructed on each patch. Then, we adjust these matrices by mapping unlabeled patches to $[1,1,{\cdots},1]^T$. The solutions of all the mapping matrices are integrated into an overall objective function, which uses ${\ell}_{2,1}$-norm minimization constraints to improve discrimination ability of mapping matrices and reduce the impact of noise. After mapping matrices are computed, we adopt majority-voting strategy to classify the probe samples. To further learn the discrimination information between probe samples and obtain more robust mapping matrices, we also propose a multistage PSLR (MPSLR) algorithm, which iteratively updates the training dataset by adding those reliably labeled probe samples into it. The effectiveness of our approaches is evaluated using three public facial databases. Experimental results prove that our approaches are robust to illumination, expression and occlusion.

준지도 지지 벡터 회귀 모델을 이용한 반응 모델링 (Response Modeling with Semi-Supervised Support Vector Regression)

  • 김동일
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권9호
    • /
    • pp.125-139
    • /
    • 2014
  • 본 논문에서는 준지도 지지 벡터 회귀 모델(semi-supervised support vector regression)을 이용한 반응 모델링(response modeling)을 제안한다. 반응 모델링의 성능 및 수익성을 높이기 위해, 고객 데이터 셋의 대부분을 차지하는 레이블이 존재하지 않는 데이터를 기존 레이블이 존재하는 데이터와 함께 학습에 이용한다. 제안하는 알고리즘은 학습 복잡도를 낮은 수준으로 유지하기 위해 일괄 학습(batch learning) 방식을 사용한다. 레이블 없는 데이터의 레이블 추정에서 불확실성(uncertainty)을 고려하기 위해, 분포추정(distribution estimation)을 하여 레이블이 존재할 수 있는 영역을 정의한다. 그리고 추정된 레이블 영역으로부터 오버샘플링(oversampling)을 통해 각 레이블이 없는 데이터에 대한 레이블을 복수 개 추출하여 학습 데이터 셋을 구성한다. 이 때, 불확실성의 정도에 따라 샘플링 비율을 다르게 함으로써, 불확실한 영역에 대해 더 많은 정보를 발생시킨다. 마지막으로 지능적 학습 데이터 선택 기법을 적용하여 학습 복잡도를 최종적으로 감소시킨다. 제안된 반응 모델링의 성능 평가를 위해, 실제 마케팅 데이터 셋에 대해 다양한 레이블 데이터 비율로 실험을 진행하였다. 실험 결과 제안된 준지도 지지 벡터 회귀 모델을 이용한 반응 모델이 기존 모델에 비해 더 높은 정확도 및 수익을 가질 수 있다는 점을 확인하였다.