Background Gradient Correction using Excitation Pulse Profile for Fat and $T_2{^*}$ Quantification in 2D Multi-Slice Liver Imaging

불균일 자장 보정 후처리 기법을 이용한 간 영상에서의 지방 및 $T_2{^*}$ 측정

  • Nam, Yoon-Ho (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Hahn-Sung (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Zho, Sang-Young (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Dong-Hyun (Department of Electrical and Electronic Engineering, Yonsei University)
  • 남윤호 (연세대학교 전기전자공학과) ;
  • 김한성 (연세대학교 전기전자공학과) ;
  • 조상영 (연세대학교 전기전자공학과) ;
  • 김동현 (연세대학교 전기전자공학과)
  • Received : 2012.02.22
  • Accepted : 2012.04.13
  • Published : 2012.04.30

Abstract

Purpose : The objective of this study was to develop background gradient correction method using excitation pulse profile compensation for accurate fat and $T_2{^*}$ quantification in the liver. Materials and Methods: In liver imaging using gradient echo, signal decay induced by linear background gradient is weighted by an excitation pulse profile and therefore hinders accurate quantification of $T_2{^*}$and fat. To correct this, a linear background gradient in the slice-selection direction was estimated from a $B_0$ field map and signal decays were corrected using the excitation pulse profile. Improved estimation of fat fraction and $T_2{^*}$ from the corrected data were demonstrated by phantom and in vivo experiments at 3 Tesla magnetic field. Results: After correction, in the phantom experiments, the estimated $T_2{^*}$ and fat fractions were changed close to that of a well-shimmed condition while, for in vivo experiments, the background gradients were estimated to be up to approximately 120 ${\mu}T/m$ with increased homogeneity in $T_2{^*}$ and fat fractions obtained. Conclusion: The background gradient correction method using excitation pulse profile can reduce the effect of macroscopic field inhomogeneity in signal decay and can be applied for simultaneous fat and iron quantification in 2D gradient echo liver imaging.

목적: 이 연구의 목적은 excitation pulse profile을 이용하여 불균일 자장에 의하여 발생하는 배경 경사 자장에 의한 영향을 보상하여 2차원 다중 단면 경사에코 간 영상에서의 정확한 지방 및 $T_2{^*}$ 측정을 하는 데에 있다. 대상과 방법: 2차원 경사에코영상에서 불균일 자장에 의한 배경경사자장으로 인하여 유도되는 신호의 감소는 excitation pulse profile weighting으로 나타난다. 이에 의한 영향을 최소화 하기 위하여 $B_0$ field map을 통하여 단면선택방향으로의 선형 경사자장의 정도를 추정한 후, 획득한 신호를 excitation pulse profile을 이용하여 보정하였다. $T_2{^*}$ 및 지방은 보정된 신호로부터 측정되었으며 보정방법은 3.0T 임상용 장비에서 팬텀 및 in vivo 실험을 통하여 이루어 졌다. 결과: 팬텀 실험 결과는 보정 후 측정된 $T_2{^*}$ 및 지방의 양이 자장이 균일한 경우에 가까워 진 것을 보여 주었다. In vivo 실험에서는 간에서 배경경사자장의 크기가 약 120 ${\mu}T/m$ 정도 까지로 나타났으며 보정하기 전에 비하여 측정된 $T_2{^*}$ 및 지방의 정도의 균일도가 높아지는 것을 확인할 수 있었다. 결론: Excitation pulse profile을 이용한 배경경사자장 보정 방법은 경사 에코 신호에서의 거시적인 불균일 자장에 의한 영향을 줄여 주며 2차원 간 영상에서의 적용을 통하여 보다 정확한 지방 및 $T_2{^*}$의 측정에 도움이 될 수 있다.

Keywords

References

  1. Hussain HK, Chenevert TL, Londy FJ, et al. Hepatic fat fraction: MR imaging for quantitative measurement and display--early experience. Radiology 2005;237:1048-1055
  2. Park H, Cho H, Kim E, Hur G, Kim Y, Lee B. Detection of hepatic lesion: comparison of free-breathing and respiratorytriggered diffusion-weighted MR imaging on 1.5-T MR system. J Korean Soc Magn Reson Med 2011;15:22-31
  3. Dixon WT. Simple proton spectroscopic imaging. Radiology 1984;153:189-194
  4. Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991;18:371-383
  5. Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005;106:1460-1465
  6. O'Regan DP, Callaghan MF, Wylezinska-Arridge M, et al. Liver fat content and $T_2*$: simultaneous measurement by using breathhold multiecho MR imaging at 3.0 T--feasibility. Radiology 2008;247:550-557
  7. Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 2005;54:636-644
  8. Yu H, McKenzie CA, Shimakawa A, et al. Multiecho reconstruction for simultaneous water-fat decomposition and $T_2*$ estimation. J Magn Reson Imaging 2007;26:1153-1161
  9. Haacke EM, Tkach JA, Parrish TB. Reduction of T2* dephasing in gradient field-echo imaging. Radiology 1989;170:457-462
  10. Cho S, Kim P, Lim J, Ahn C. Model-based Gradient Compensation in Spiral Imaging. J Korean Soc Magn Reson Med 2009;13:15-21
  11. Cho ZH, Ro YM. Reduction of susceptibility artifact in gradientecho imaging. Magn Reson Med 1992;23:193-200
  12. Fernandez-Seara MA, Wehrli FW. Postprocessing technique to correct for background gradients in image-based R*(2) measurements. Magn Reson Med 2000;44:358-366
  13. Dahnke H, Schaeffter T. Limits of detection of SPIO at 3.0 T using T2 relaxometry. Magn Reson Med 2005;53:1202-1206
  14. Pauly JM. New approach to selective excitation for magnetic resonance imaging. Doctral Thesis, Stanford University 1990
  15. Chebrolu VV, Hines CD, Yu H, et al. Independent estimation of T*2 for water and fat for improved accuracy of fat quantification. Magn Reson Med 2010;63:849-857
  16. Yu H, Reeder SB, Shimakawa A, Brittain JH, Pelc NJ. Field map estimation with a region growing scheme for iterative 3-point water-fat decomposition. Magn Reson Med 2005;54:1032-1039
  17. Jenkinson M. Fast, automated, N-dimensional phase-unwrapping algorithm. Magn Reson Med 2003;49:193-197
  18. Lu W, Hargreaves BA. Multiresolution field map estimation using golden section search for water-fat separation. Magn Reson Med 2008;60:236-244
  19. Bydder M, Shiehmorteza M, Yokoo T, et al. Assessment of liver fat quantification in the presence of iron. Magn Reson Imaging 2010;28:767-776