DOI QR코드

DOI QR Code

Effect of Harvest Time and Infective Juvenile Size of the Entomopathogenic Nematode, Steinernema arenarium, on Pathogenicity, Development, and Propagation

곤충병원성선충, Steinernema arenarium의 수확시기와 유충 체장이 병원성과 발육 및 증식에 미치는 영향

  • Han, Gun-Yeong (Division of Applied Life Science (BK21), Department of Applied Biology, Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Lee, Dong-Woon (Major of Applied Biology, School of Ecology, Environment and Tourism, Kyungpook National University) ;
  • Choo, Young-Moo (Department of Entomology, University of California) ;
  • Choo, Ho-Yul (Department of Applied Biology, Institute of Agriculture and life Sciences, Gyeongsang National University)
  • 한건영 (경상대학교 응용생명과학부(BK21), 응용생물학과, 농업생명과학연구원) ;
  • 이동운 (경북대학교 생태환경관광학부 생물응용전공) ;
  • 추영무 ;
  • 추호렬 (경상대학원 농업생명과학대학 농업생명과학원 응용생물학과)
  • Received : 2011.09.28
  • Accepted : 2012.02.01
  • Published : 2012.03.01

Abstract

The size of infective $Steinernema$ $arenarium$ juveniles is variable and ranges from 724 to 1408 ${\mu}m$. Effects of harvest time and infective juvenile size on pathogenicity, development, and reproduction were examined in the last instar of the great wax moth, $Galleria$ $mellonella$. Harvest time of infective juveniles (IJs) of $S.$ $arenarium$ affected pathogenicity. IJs harvested at the 10th day from trapping were more pathogenic than those harvested the 3rd day from trapping. Mortality of $G$. mellonella also depending on harvest time, $i.e$, 100% died within 48h when IJs were harvested at the 10th day, without relation to size. However, mortality was 40% in the small size group (SSG) compared with 18% in the large size group (LSG) within 48h when IJs were harvested at the 3rd day. Establishment of $S.$ $arenarium$ within the host was different depending on IJ size. The number of established IJs was 1.8 in the SSG, 3.3 in the LSG, and 3.2 in the mixed size group (MSG) when IJs were harvested at the 3rd day, and 5.3 in the SSG, 7.4 in the LSG, and 7.6 in the MSG when IJs were harvested at the 10th day. The length of the female adult was 7,070.5 ${\mu}m$ in the SSG and 7,893.9 ${\mu}m$ in the LSG and that of the male was 1,460.5 ${\mu}m$ in the SSG and 1,688.2 ${\mu}m$ in the LSG when IJs were harvested at the 3rd day. The length of the female adult was 7,573.6 ${\mu}m$ in the SSG and 8,305.4 ${\mu}m$ in the LSG and that of the male adult was 1,733.4 ${\mu}m$ in the SSG and 1,794.4 ${\mu}m$ in the LSG when IJs were harvested at the 10th day. Harvest time and size of IJs did not influence numbers of progeny or size of IJS.

곤충병원성선충, $Steinernema$ $arenarium$ 유충의 체장은 724 to 1408 ${\mu}m$로 변이가 크다. 따라서 $S.$ $arenarium$의 수확시기와 침입태 유충의 체장이 병원성과 발육 및 증식에 미치는 영향을 꿀벌부채명나방($Galleria$ $mellonella$) 노숙유충을 대상으로 조사하였다. $S.$ $arenarium$ 침입태 유충의 수확시기는 병원성에 영향을 미쳐 10일째에 수확한 것이 3일째 수확한 것에 비하여 병원성이 높았다. 10일째에 수확한 선충은 선충의 체장에 관계없이 처리 48시간 후에 꿀벌부채명나방 유충을 100% 치사시켰으나 3일째 수확한 체장이 작은 집단 접종 시에는 40%의 치사율을 보였으며 체장이 큰 집단은 18%의 치사율을 보였다. 기주 체내에 정착한 선충의 수도 침입태 유충의 체장에 따라 차이가 있었다. 3일째 수확한 선충들 중 체장이 작은 집단과 큰 집단, 혼합 집단 접종 시 기주에 정착한 선충 수는 각각 1.8, 3.3, 3.2마리였으며 10일째 수확한 선충들은 각각 5.3, 7.4, 7.6마리가 정착하였다. 3일째 수확한 유충의 체장이 작은 집단과 큰 집단을 구분하여 처리하였을 때 기주 체내의 암컷 체장은 각각 7,070.5 ${\mu}m$와 7,893.9 ${\mu}m$였고, 수컷 체장은 각각 1,460.5 ${\mu}m$와 1,688.2 ${\mu}m$였다. 10일째 수확한 체장이 작은 집단과 큰 집단 접종 시에는 기주 체내에서 성숙한 암컷의 체장은 각각 7,573.6 ${\mu}m$와 8,305.4 ${\mu}m$였고, 수컷의 체장은 1,733.4 ${\mu}m$와 1,794.4 ${\mu}m$였다. 수확시기와 접종 선충의 체장은 침입태 유충의 체장과 증식수에 영향을 미치지 않았다.

Keywords

References

  1. Akhurst. R.J. and N.E. Boemare. 1990. Biology and taxonomy of Xenorhabdus. In: Gaugler, R. and H.K. Kaya (eds.), Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, Florida, 75-90 pp.
  2. Artyukhovsky, A.K. 1967. Neoaplectana arenarium nov. sp. (Steinernematidae: Nematoda) inducing nematode disease in chafers of the Voronezh region. Trudy Voronezbskogo Gosudarstvennogo Zapovednika 15: 94-100.
  3. Bedding, R.A. and A.S. Molyneux. 1982. Penetration of insect cuticle juvenile of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematologica 28: 354-359. https://doi.org/10.1163/187529282X00402
  4. Boemare, N., C. Laumond and H. Mauleon. 1996. The entomopathogenic nematode-bacterium complex: biology, life cycle, and vertebrate safety. Biocontrol Sci. Technol. 6: 333-345. https://doi.org/10.1080/09583159631316
  5. Brown, M. and R. Gaugler. 1997. Temperature and humidity influence emergence and survival of entomopathogenic nematodes. Nematologica 43: 363-376. https://doi.org/10.1163/005025997X00102
  6. Calder, W.A. 1983. Body size, mortality and longevity. J. Theor. Biol. 102: 135-144. https://doi.org/10.1016/0022-5193(83)90266-7
  7. Chen, S., X. Han and M. Moens. 2003a. Biological control of Delia radicum (Diptera: Anthomyiidae) with entomopathogenic nematodes. Appl. Entomol. Zool. 38: 441-448. https://doi.org/10.1303/aez.2003.441
  8. Chen, S., X. Han and M. Moens. 2003b. Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to Delia radicum. Biocontrol 48 : 713-724. https://doi.org/10.1023/A:1026341325264
  9. Garcia del Pino F. and M. Jove. 2005. Compatibility of entomopathogenic nematodes with fipronil. J. Helminthol. 79: 333-337. https://doi.org/10.1079/JOH2005294
  10. Gaugler, R. 2001. Entomopathgenic nematology. CABI Publishing. 1: 14-15.
  11. Georgis, R. and N.G.M. Hague. 1981. A neoaplectanid nematode in the web-spinning larch sawfly Cephalcia lariciphila (Hymenoptera: Pamphiliidae). Ann. Appl. Biol. 99: 171-177. https://doi.org/10.1111/j.1744-7348.1981.tb05144.x
  12. Glazer, I. 1992. Invasion rate as a measure of infectivity of steinernematid and heterorhabditid nematodes to insects. J. Invertebr. Pathol. 59: 90-94. https://doi.org/10.1016/0022-2011(92)90116-L
  13. Gouge, D.H. and N.G.M. Hague. 1995. The susceptibility of different species of sciarid flies to entomopathegenic nematodes. J. Helminthol. 69: 313-318. https://doi.org/10.1017/S0022149X00014887
  14. Grewal, P.S., S. Selvan, E.E. Lewis and R. Gaugler. 1993. Male insect parasitic nematodes, a colonizing sex. Experimentia 49: 605-608. https://doi.org/10.1007/BF01955173
  15. Han, G.Y., D.W. Lee and H.Y. Choo. 2010. Effect of inoculation concentration on pathogenicity, development, propagation and body length of entomopathogenic nematode, Steinernema arenarium (Nematoda: Steinernematidae). Kor. J. Appl. Entomol. 49: 61-67. https://doi.org/10.5656/KSAE.2010.49.1.061
  16. Honek, A. 1993. Intraspecific variation in body size and fecundity in insects-a general relationship. Oikos 66: 483-492. https://doi.org/10.2307/3544943
  17. Hang, D.T., H.Y. Choo, D.W. Lee, S.M. Lee, H.K. Kaya and C.G. Park. 2007. Temperature effects on Korean entomopathogenic nematodes, Steinernema glaseri and S. longicaudum and their symbiotic bacteria. Journal of Microbiology and Biotechnology 17: 420-427.
  18. Hudson, W.G. and K.B. Nguyen. 1989. Effects of soil moisture, exposure time, nematode age, and nematode density on laboratory infection of Scapteriscus vicinus and S. acletus (Orthoptera: Gryllotalpidae) by Neoaplectana sp. (Rhabditida: Steinernematidae). Environ. Entomol. 18: 719-722. https://doi.org/10.1093/ee/18.4.719
  19. Ishibashi, N. 2002. Behaviour of entomopathogenic nematodes. In: Lee, D.L. (ed.), The biology of nematodes. Taylor & Francis. London. pp.511-520.
  20. Kakouli-Duarte, T. and N.G.M. Hague. 1999. Infection, development, and reproduction of the entomopathogenic nematode Steinernema arenarium (Nematoda: Steinernematidae) in the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae). Nematology 1: 149-156. https://doi.org/10.1163/156854199508117
  21. Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  22. Koppenhofer, A.M., H.K. Kaya and S.P. Taormino. 1995. Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moistures. J. Invertebr. Pathol. 65: 193-199. https://doi.org/10.1006/jipa.1995.1028
  23. Kozodoi, E.M. 1984. A new entomopathogenic nematode Neoaplectana anomali sp. n. (Rhabditida: Steinernematidae) and observation on its biology. Zoological Journal 63: 1605-1609.
  24. Kuhlmann, U. and W.A.C.M. Der Burgt. 1998 Possibilities for biological control of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Central Europe. Biocontrol News and Information 19: 59-68.
  25. Lee, S. W., D. W. Lee and H. Y. Choo. 2007. Development of economical artificial diets for greater wax moth, Galleria mellonella (L.). Korean J. Appl. Entomol. 46: 385-392. https://doi.org/10.5656/KSAE.2007.46.3.385
  26. Lewis, E.E., J.F. Campbell and R. Gaugler. 1997. The effect of aging on the foraging behaviour of Steinernema carpocapsae (Rhabditida: Steinernematidae). Nematologica 43: 1-8. https://doi.org/10.1163/004725997X00016
  27. Liu, Q.Z. and I. Glazer. 2000. Desiccation survival of entomopathogenic nematodes of the genus Heterorhabditis. Phytoparasitica 28: 331-340. https://doi.org/10.1007/BF02981828
  28. Mason, J.M. and W.M. Homonick. 1995. The effect of temperature on infection, development and reproduction of Heterorhabditis. J. Helminthol. 69: 337-345. https://doi.org/10.1017/S0022149X00014929
  29. Mracek, Z., S. Becvar, P. Kindlmann and J. Jersakova. 2005. Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic. Biological Control 34: 27-37. https://doi.org/10.1016/j.biocontrol.2005.03.023
  30. Nickle, W.R. and M. Shapiro. 1994. Effects of eight brighteners as solar radiation protectants for Steinernema carpocapsae All strain. J. Nematol. 26: 782-784.
  31. O'Neill, K.M. 1985. Egg size, prey size, and sexual size dimorphism in digger wasps (Hymenoptera: Sphecidae). Can. J. Zool. 63: 2187-2193. https://doi.org/10.1139/z85-323
  32. Poinar, G.O., Jr 1986. Entomopathogenic nematodes. In: Franz, J.M. (ed.), Biological plant and health protection. Fischer Verleg, Stuttgart, Germany, pp. 95-121.
  33. Poinar, G.O., Jr. 1990. Taxonomy and biology of Steinnernematidae and Heterohabditidae. In: In: Gaugler, R. and H.K. Kaya (eds.), Entomopathogenic nematodes in biological control. Boca Raton. FL. USA. CRC Press. Boca Raton, Florida, pp.22-61.
  34. Roff, D. 1992. The evolution of life histories: theory and analysis. Chapman and Hall, New York.
  35. SAS Institute. 1999. SAS 8 for Windows. Cary. NC.
  36. Schirocki, A.C. and N.G.M. Hague. 1997. The effect of selective culture of Steinernema feltiae at low temperature on establishment, pathogenicity, reproduction and size of infective juveniles. Nematologica 43: 481-490. https://doi.org/10.1163/005125997X00075
  37. Smith, R.J. 2002. Effect of larval body size on overwinter survival and emerging adult size in the burying beetle, Nicrophorus investigator. Can. J. Zool. 80: 1588-1593. https://doi.org/10.1139/z02-151
  38. Smith, R.J., A. Hines, S. Richmond, M. Merrick, A. Drew and R. Fargo. 2000. Altitudinal variation in body size and population density of Nicrophorus investigator (Coleoptera: Silphidae). Environ. Entomol. 29: 290-298. https://doi.org/10.1603/0046-225X(2000)029[0290:AVIBSA]2.0.CO;2
  39. Trager, M.D. and J.C. Daniels. 2011. Size effects on mating and egg production in the Miami blue butterfly. J. Insect Behav. 24: 34-43. https://doi.org/10.1007/s10905-010-9234-8
  40. White, G.F. 1927. A method for obtaining infective nematode larvae from cultures. Science 66: 302-303.
  41. Woodring, J.L. and H.K. Kaya. 1988. Steinernematidae and Heterorhabditidae nematodes: a handbook of techniques. Southern Coop. Ser. Bull. 331, Alkansas Agri. Exp. Stn. Fayetteville, AR. 29pp.
  42. Zervos, S., S.C. Johnson and J.M. Webster. 1991. Effect of temperature and inocolum size on reproduction and development of Heterorhabditis heliothidis and Steinernema glaseri (Nematoda: Rhabditidae) in Galleria mellonella. Can. J. Zool. 69: 1261-1264. https://doi.org/10.1139/z91-177

Cited by

  1. Mechanical production of pellets for the application of entomopathogenic nematodes: effect of pre-acclimation of Steinernema glaseri on its survival time and infectivity against Phyllophaga vetula vol.27, pp.8, 2017, https://doi.org/10.1080/09583157.2017.1366423
  2. Evaluation of Entomopathogenic Nematodes against Armyworm, Pseudaletia separata on Tall Fescue, Festuca arundinacea vol.2, pp.3, 2013, https://doi.org/10.5660/WTS.2013.2.3.312