초록
밀리미터파 영상시스템은 의복을 투과하는 성질이 뛰어나서 의복 속에 숨겨둔 은닉 물체를 탐지하는 분야에 활용된다. 더불어 수동형 밀리미터파 영상 시스템은 능동형 시스템과 달리 실내외의 개방된 공간에서 움직이는 대상자들의 탐지가 가능하다. 그러나 수동형 밀리미터파 영상은 일반적으로 회절의 제한과 낮은 신호 레벨로 해상도가 낮으며 잡음의 영향이 크다. 그러므로 영상을 효과적으로 처리하기 위한 신호의 모델링과 통계적 분석이 요구된다. 본 논문에서 은닉 물체 검출을 수행하는 밀리미터파 영상 분할 알고리즘을 C++로 구현하여 실시간으로 처리한다. 영상의 분석을 위하여 밀리미터파 영상의 히스토그램을 혼합 가우시안 모델로 추정하고 은닉 물체를 다단계 영상 분할 방법으로 추출한다. 다단계 분할은 배경에서 몸체를 분리하는 전역분할과 은닉물체를 몸체에서 분리하는 국소분할로 이루어진다. 각 분할단계는 $k$-means, EM 추정, 판정단계로 구성되어 있다. 실험에서 실외에서 획득한 수동형 밀리미터파 영상을 분석하여 은닉 물체를 실시간으로 검출할 수 있음을 확인한다.
Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.