DOI QR코드

DOI QR Code

Optimal Design of a Magnetorheological Haptic Gripper Reflecting Grasping Force and Rolling Moment from Telemanipulator

원격조작기의 악력과 회전모멘트를 고려한 MR 햅틱 그리퍼의 최적설계

  • Received : 2012.03.21
  • Accepted : 2012.04.17
  • Published : 2012.05.20

Abstract

In this work, the configuration of a haptic gripper featuring magnetorheological(MR) brakes is proposed and an optimal design of the MR brakes for the haptic griper is performed considering the required braking torque, the uncontrollable torque(zero-field friction torque) and mass of the brakes. Several configurations of MR brake is proposed such as disc-type, serpentine-type and hybrid-type. After the configurations of the MR brakes are proposed, braking torque of the brakes is analyzed based on Bingham rheological model of the MR fluid. The zero-field friction torque of the MR brakes is also analyzed. An optimization procedure based on finite element analysis integrated with an optimization toolbox is developed for the MR brakes. The purpose of the optimal design is to find optimal geometric dimensions of the MR brake structure that can produce the required braking torque and minimize the mass of the MR brakes. In addition, the uncontrollable torque of the MR brakes is constrained to be much smaller than the required braking torque. Based on the developed optimization procedure, optimal solution of the proposed MR brakes are achieved and the best MR brake is determined. The working performance of the optimized MR brake is then investigated.

이 연구에서는 MR 브레이크를 이용하는 새로운 형태의 햅틱 그리퍼를 제안하였다. 이를 위하여, 다양한 형태의 MR 브레이크를 고려한 뒤, 각 MR 브레이크의 제동 토크와 점성 마찰토크를 빙햄 모델에 기반하여 분석하였다. MR 브레이크의 최적설계를 위해 유한요소법과 최적화 toolbox를 통합한 새로운 알고리즘이 고안되었으며, 점성 마찰토크는 필요 제동 토크보다 작도록 구속조건을 설정하였다. 이러한 최적 설계 알고리즘을 통하여 적절한 제동 토크를 시스템에 부하할 수 있으며 무게가 최소화된 MR 브레이크를 설계할 수 있었다. 그리고 최적 설계된 MR 브레이크의 성능 또한 고찰하였다.

Keywords

References

  1. Stone, R. J., 2000, Haptic Feedback: a Brief History from Telepresent to Virtual Reality, Proc. 1st International Workshop on Haptic Human-computer Interaction LNCS 2085, pp. 1-16.
  2. Lemoine, P., Gutierrez, M., Vexo, F. and Thanmann, D., 2004, Mediators: Virtual Interfaces with Haptic Feedback, Proc.EuroHaptics, Munich, Germany, pp. 68-73.
  3. Gupta, A. and O'Malley, M. K., 2006, Design of a Haptic Arm Exoskeleton for Training and Rehabilitation, IEEE-ASME Transactions on Mechatronics, Vol. 11, No. 3, pp. 280-289. https://doi.org/10.1109/TMECH.2006.875558
  4. Alan, S. and Marcia, K. O., 2006, Performance Enhancement of a Haptic Arm Exoskeleton, Haptics, International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.
  5. Chapuis, D., et al., 2010, ReFlex, a Haptic Wrist Interface for Motor Learning and Rehabilitation, IEEE Haptics Symposium, pp. 417-424.
  6. Nguyen, Q. H. and Choi, S. B., 2011, Optimal Design of a Hybrid MR Brake for Haptic Wrist Application, Proc. SPIE, Vol. 7977, No. 1, pp. 7977 18-.
  7. Blake, J. and Gurocak, H. B., 2009, Haptic Glove With MR Brakes for Virtual Reality, IEEE-ASME Transactions on Mechatronics, Vol. 14, No. 5 pp. 606-615.
  8. Winter, S. H. and Bouzit, M., 2007, Use of Magnetorheological Fluid in a Force Feedback Glove, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 15, No. 1, pp. 2-8. https://doi.org/10.1109/TNSRE.2007.891401
  9. Bullion, C. and Gurocak, H., 2009, Haptic Glove with MR Brakes for Distributed Finger Force Feedback, Presence-Teleoperators and Virtual Environments, Vol. 18, No. 6, pp. 421-433. https://doi.org/10.1162/pres.18.6.421
  10. Ferre, M., Galiana, I., et al., 2011, Haptic Device for Capturing and Simulating Hand Manipulation Rehabilitation, IEEE-ASME Transactions on Mechatronics, Vol. 16, No. 5, pp. 808-815. https://doi.org/10.1109/TMECH.2011.2159807
  11. Johnsson, M. and Balkenius, C., 2006, Experiments with Artificial Haptic Perception in a Robotic Hand, Journal of Intelligent & Fuzzy Systems, Vol. 17, No. 4, pp. 377-385.
  12. Kawasaki, H. and Mouri, T., 2007, Design and Control of Five-fingered Haptic Interface Opposite to Human Hand, IEEE Transactions on Robotics, Vol. 23, No. 5, pp. 909-918. https://doi.org/10.1109/TRO.2007.906258
  13. Kang, P. S., Han, Y. M. and Choi, S. B., 2006, Force-feedback Control of an Electrorheological Haptic Device in MIS Virtual Environment, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 16, No. 12, pp. 1286-1293. https://doi.org/10.5050/KSNVN.2006.16.12.1286
  14. Senkal, D. and Gurocak, H., 2009, Compact MR-brake with Serpentine Flux Path for Haptics Applications, World Haptics Conference, pp. 91-96.
  15. Nguyen, Q. H. and Choi, S. B., 2010, Optimal Design of an Automotive Magnetorheological Brake Considering Geometric Dimensions and Zero-field Friction Heat, Smart Matter. Struct. Vol. 19, No. 11, pp. 1-11.
  16. Zubieta, M., Eceolaza, S., Elejabarrieta, M. J. and Bou-Ali, M. M., 2009, Magnetorheological Fluids: Characterization and Modeling of Magnetization, Smart Matter. Struct., Vol. 18, pp. 1-6.