DOI QR코드

DOI QR Code

An Empirical Relation between the Plating Process and Accelerator Coverage in Cu Superfilling

  • Cho, Sung-Ki (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kim, Myung-Jun (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Koo, Hyo-Chol (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kim, Soo-Kil (School of Integrative Engineering, Chung-Ang University) ;
  • Kim, Jae-Jeong (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
  • Received : 2012.01.25
  • Accepted : 2012.02.09
  • Published : 2012.05.20

Abstract

The effects of plating process on the surface coverage of the accelerator were investigated in terms of Cu superfilling for device metallization. When a substrate having 500 nm-wide trench patterns on it was immersed in an electrolyte containing poly (ethylene glycol) (PEG)-chloride ion ($Cl^-$)-bis(3-sulfopropyl) disulfide (SPS) additives without applying deposition potential for such a time of about 100s, voids were generated inside of the electrodeposit. In time-evolved electrochemical analyses, it was observed that the process (immersion without applying potential) in the electrolyte led to the build-up of high initial coverage of SPS-Cl on the surface, resulting in the fast saturation of the coverage. Repeated experiments suggested that the fast saturation of SPS-Cl failed in superfilling while a gradual increase in the SPS-Cl coverage through competition with initially adsorbed PEG-Cl enabled it. Consequently, superfilling was achievable only in the case of applying the plating potential as soon as the substrate is dipped in an electrolyte to prevent rapid accumulation of SPS-Cl on the surface.

Keywords

References

  1. Andricacos, P. C.; Uzoh, C.; Dukovic, J.; Horkans, J.; Deligianni, H. IBM J. Res. Dev. 1998, 42, 567. https://doi.org/10.1147/rd.425.0567
  2. Dukovic, J. O. IBM J. Res. Dev. 1993, 37, 125. https://doi.org/10.1147/rd.372.0125
  3. Pyo, S. G. Met. Mater.-Int. 2008, 14, 767. https://doi.org/10.3365/met.mat.2008.12.767
  4. Woo, T.-G.; Park, I.-S.; Seol, K.-W. Met. Mater.-Int. 2009, 15, 293. https://doi.org/10.1007/s12540-009-0293-3
  5. Kelly, J. J.; West, A. C. J. Electrochem. Soc. 1998, 145, 3472. https://doi.org/10.1149/1.1838829
  6. Kelly, J. J.; West, A. C. J. Electrochem. Soc. 1998, 145, 3477. https://doi.org/10.1149/1.1838830
  7. Moffat, T. P.; Bonevich, J. E.; Huber, W. H.; Stanishevsky, A.; Kelly, D. R.; Stafford, G. R.; Josell, D. J. Electrochem. Soc. 2000, 147, 4524. https://doi.org/10.1149/1.1394096
  8. Josell, D.; Wheeler, D.; Huber, W. H.; Moffat, T. P. Phys. Rev. Lett. 2001, 87, 016102. https://doi.org/10.1103/PhysRevLett.87.016102
  9. Reid, J. Jpn. J. Appl. Phys. 2001, 40, 2650. https://doi.org/10.1143/JJAP.40.2650
  10. West, A. C.; Mayer, S.; Reid, J. Electrochem. Solid-State Lett. 2001, 4, C50. https://doi.org/10.1149/1.1375856
  11. Radisic, A.; West, A. C.; Searson, P. C. J. Electrochem. Soc. 2002, 149, C94. https://doi.org/10.1149/1.1430719
  12. Frank, A.; Bard, A. J. J. Electrochem. Soc. 2003, 150, C244. https://doi.org/10.1149/1.1557081
  13. Kim, J. J.; Kim, S.-K.; Kim, Y. S. J. Electroanal. Chem. 2003, 542, 61. https://doi.org/10.1016/S0022-0728(02)01450-X
  14. Kim, S.-K.; Kim, J. J. Electrochem. Solid-State Lett. 2004, 7, C98. https://doi.org/10.1149/1.1777552
  15. Cho, S. K.; Kim, S.-K.; Kim, J. J. J. Electrochem. Soc. 2005, 152, C330. https://doi.org/10.1149/1.1891645
  16. Moffat, T. P.; Wheeler, D.; Edelstein, M. D.; Josell, D. IBM J. Res. Dev. 2005, 49, 19. https://doi.org/10.1147/rd.491.0019
  17. Moffat, T. P.; Wheeler, D.; Witt, C.; Josell, D. Electrochem. Solid- State Lett. 2002, 5, C110. https://doi.org/10.1149/1.1521290
  18. Willis, M.; Alkire, R. J. Electrochem. Soc. 2009, 156, D377. https://doi.org/10.1149/1.3183502
  19. Martyak, N. M.; Ricou, P. Mater. Sci. Semicond. Process 2003, 6, 225. https://doi.org/10.1016/j.mssp.2003.09.002
  20. Reid, J.; Mayer, S.; Broadbent, E.; Klawuhn, E.; Ashtiani, K. Solid State Technol. 2000, 43, 86.
  21. Andryuschenko, T.; Reid, J. IEEE International Interconnect Conference 2001, 33.
  22. Lee, S.-W.; Shi, F. G.; Lopatin, S. D. Microelectron. J. 2002, 33, 945. https://doi.org/10.1016/S0026-2692(02)00100-3
  23. Martyak, N. M.; Ricou, P. Mat. Sci. Semi. Proc. 2003, 6, 225. https://doi.org/10.1016/j.mssp.2003.09.002
  24. Mikkola, R. A.; Calvert, J. M. US Patent 6682642, 24 Jan, 2004.
  25. Haumesser, P. H.; Roule, A.; Maitrejean, S.; Passemard, G. Future Fab. Intl. 2005, 19.
  26. Roule, A.; Amuntencei, A.; Deronzier, E.; Haumesser, P. H.; Silva, S. D.; Avale, X.; Pollet, O.; Baskaram, R.; Passemard, G. Microelectron. Eng. 2007, 84, 2610. https://doi.org/10.1016/j.mee.2007.06.014
  27. Kim, J. J.; Kim, S.-K. Appl. Surf. Sci. 2001, 183, 311. https://doi.org/10.1016/S0169-4332(01)00585-2
  28. Moffat, T. P.; Wheeler, D.; Josell, D. J. Electrochem. Soc. 2004, 151, C262. https://doi.org/10.1149/1.1651530
  29. Kim, S.-K.; Josell, D.; Moffat, T. P. J. Electrochem. Soc. 2006, 153, C826. https://doi.org/10.1149/1.2354456
  30. Tan, M.; Harb, J. N. J. Electrochem. Soc. 2003, 150, C420. https://doi.org/10.1149/1.1570412

Cited by

  1. Factors governing filling of blind via and through hole in electroplating vol.40, pp.3, 2014, https://doi.org/10.1108/CW-05-2014-0019
  2. Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.26
  3. Pulse-Reverse Electrodeposition of Cu for the Fabrication of Metal Interconnection vol.160, pp.12, 2013, https://doi.org/10.1149/2.015312jes
  4. Pulse-Reverse Electrodeposition of Cu for the Fabrication of Metal Interconnection vol.160, pp.12, 2013, https://doi.org/10.1149/2.016312jes
  5. Cu Bottom-Up Filling for Through Silicon Vias with Growing Surface Established by the Modulation of Leveler and Suppressor vol.160, pp.12, 2013, https://doi.org/10.1149/2.037312jes
  6. Electrodeposition of Cu Films with Low Resistivity and Improved Hardness Using Additive Derivatization vol.161, pp.14, 2014, https://doi.org/10.1149/2.0271414jes
  7. Bottom-up Filling of through Silicon Vias Using Galvanostatic Cu Electrodeposition with the Modified Organic Additives vol.162, pp.3, 2015, https://doi.org/10.1149/2.0561503jes
  8. Electrochemical Behavior of Citric Acid and Its Influence on Cu Electrodeposition for Damascene Metallization vol.162, pp.8, 2015, https://doi.org/10.1149/2.0561508jes
  9. Voltammetric Observation of Transient Catalytic Behavior of SPS in Copper Electrodeposition—Its Interaction with Cuprous Ion from Comproportionation vol.163, pp.8, 2016, https://doi.org/10.1149/2.1101608jes
  10. Experimental and Simulation Investigations of Copper Reduction Mechanism with and without Addition of SPS vol.165, pp.13, 2018, https://doi.org/10.1149/2.0291813jes
  11. Rapid Determination of the Electrodeposition Potential for Cu Superfilling Using a Nanocones Array Structured Electrode vol.165, pp.9, 2018, https://doi.org/10.1149/2.0431809jes
  12. 구리 전해 도금을 이용한 실리콘 관통 비아 채움 공정 vol.54, pp.6, 2016, https://doi.org/10.9713/kcer.2016.54.6.723