References
- Andricacos, P. C.; Uzoh, C.; Dukovic, J.; Horkans, J.; Deligianni, H. IBM J. Res. Dev. 1998, 42, 567. https://doi.org/10.1147/rd.425.0567
- Dukovic, J. O. IBM J. Res. Dev. 1993, 37, 125. https://doi.org/10.1147/rd.372.0125
- Pyo, S. G. Met. Mater.-Int. 2008, 14, 767. https://doi.org/10.3365/met.mat.2008.12.767
- Woo, T.-G.; Park, I.-S.; Seol, K.-W. Met. Mater.-Int. 2009, 15, 293. https://doi.org/10.1007/s12540-009-0293-3
- Kelly, J. J.; West, A. C. J. Electrochem. Soc. 1998, 145, 3472. https://doi.org/10.1149/1.1838829
- Kelly, J. J.; West, A. C. J. Electrochem. Soc. 1998, 145, 3477. https://doi.org/10.1149/1.1838830
- Moffat, T. P.; Bonevich, J. E.; Huber, W. H.; Stanishevsky, A.; Kelly, D. R.; Stafford, G. R.; Josell, D. J. Electrochem. Soc. 2000, 147, 4524. https://doi.org/10.1149/1.1394096
- Josell, D.; Wheeler, D.; Huber, W. H.; Moffat, T. P. Phys. Rev. Lett. 2001, 87, 016102. https://doi.org/10.1103/PhysRevLett.87.016102
- Reid, J. Jpn. J. Appl. Phys. 2001, 40, 2650. https://doi.org/10.1143/JJAP.40.2650
- West, A. C.; Mayer, S.; Reid, J. Electrochem. Solid-State Lett. 2001, 4, C50. https://doi.org/10.1149/1.1375856
- Radisic, A.; West, A. C.; Searson, P. C. J. Electrochem. Soc. 2002, 149, C94. https://doi.org/10.1149/1.1430719
- Frank, A.; Bard, A. J. J. Electrochem. Soc. 2003, 150, C244. https://doi.org/10.1149/1.1557081
- Kim, J. J.; Kim, S.-K.; Kim, Y. S. J. Electroanal. Chem. 2003, 542, 61. https://doi.org/10.1016/S0022-0728(02)01450-X
- Kim, S.-K.; Kim, J. J. Electrochem. Solid-State Lett. 2004, 7, C98. https://doi.org/10.1149/1.1777552
- Cho, S. K.; Kim, S.-K.; Kim, J. J. J. Electrochem. Soc. 2005, 152, C330. https://doi.org/10.1149/1.1891645
- Moffat, T. P.; Wheeler, D.; Edelstein, M. D.; Josell, D. IBM J. Res. Dev. 2005, 49, 19. https://doi.org/10.1147/rd.491.0019
- Moffat, T. P.; Wheeler, D.; Witt, C.; Josell, D. Electrochem. Solid- State Lett. 2002, 5, C110. https://doi.org/10.1149/1.1521290
- Willis, M.; Alkire, R. J. Electrochem. Soc. 2009, 156, D377. https://doi.org/10.1149/1.3183502
- Martyak, N. M.; Ricou, P. Mater. Sci. Semicond. Process 2003, 6, 225. https://doi.org/10.1016/j.mssp.2003.09.002
- Reid, J.; Mayer, S.; Broadbent, E.; Klawuhn, E.; Ashtiani, K. Solid State Technol. 2000, 43, 86.
- Andryuschenko, T.; Reid, J. IEEE International Interconnect Conference 2001, 33.
- Lee, S.-W.; Shi, F. G.; Lopatin, S. D. Microelectron. J. 2002, 33, 945. https://doi.org/10.1016/S0026-2692(02)00100-3
- Martyak, N. M.; Ricou, P. Mat. Sci. Semi. Proc. 2003, 6, 225. https://doi.org/10.1016/j.mssp.2003.09.002
- Mikkola, R. A.; Calvert, J. M. US Patent 6682642, 24 Jan, 2004.
- Haumesser, P. H.; Roule, A.; Maitrejean, S.; Passemard, G. Future Fab. Intl. 2005, 19.
- Roule, A.; Amuntencei, A.; Deronzier, E.; Haumesser, P. H.; Silva, S. D.; Avale, X.; Pollet, O.; Baskaram, R.; Passemard, G. Microelectron. Eng. 2007, 84, 2610. https://doi.org/10.1016/j.mee.2007.06.014
- Kim, J. J.; Kim, S.-K. Appl. Surf. Sci. 2001, 183, 311. https://doi.org/10.1016/S0169-4332(01)00585-2
- Moffat, T. P.; Wheeler, D.; Josell, D. J. Electrochem. Soc. 2004, 151, C262. https://doi.org/10.1149/1.1651530
- Kim, S.-K.; Josell, D.; Moffat, T. P. J. Electrochem. Soc. 2006, 153, C826. https://doi.org/10.1149/1.2354456
- Tan, M.; Harb, J. N. J. Electrochem. Soc. 2003, 150, C420. https://doi.org/10.1149/1.1570412
Cited by
- Factors governing filling of blind via and through hole in electroplating vol.40, pp.3, 2014, https://doi.org/10.1108/CW-05-2014-0019
- Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.26
- Pulse-Reverse Electrodeposition of Cu for the Fabrication of Metal Interconnection vol.160, pp.12, 2013, https://doi.org/10.1149/2.015312jes
- Pulse-Reverse Electrodeposition of Cu for the Fabrication of Metal Interconnection vol.160, pp.12, 2013, https://doi.org/10.1149/2.016312jes
- Cu Bottom-Up Filling for Through Silicon Vias with Growing Surface Established by the Modulation of Leveler and Suppressor vol.160, pp.12, 2013, https://doi.org/10.1149/2.037312jes
- Electrodeposition of Cu Films with Low Resistivity and Improved Hardness Using Additive Derivatization vol.161, pp.14, 2014, https://doi.org/10.1149/2.0271414jes
- Bottom-up Filling of through Silicon Vias Using Galvanostatic Cu Electrodeposition with the Modified Organic Additives vol.162, pp.3, 2015, https://doi.org/10.1149/2.0561503jes
- Electrochemical Behavior of Citric Acid and Its Influence on Cu Electrodeposition for Damascene Metallization vol.162, pp.8, 2015, https://doi.org/10.1149/2.0561508jes
- Voltammetric Observation of Transient Catalytic Behavior of SPS in Copper Electrodeposition—Its Interaction with Cuprous Ion from Comproportionation vol.163, pp.8, 2016, https://doi.org/10.1149/2.1101608jes
- Experimental and Simulation Investigations of Copper Reduction Mechanism with and without Addition of SPS vol.165, pp.13, 2018, https://doi.org/10.1149/2.0291813jes
- Rapid Determination of the Electrodeposition Potential for Cu Superfilling Using a Nanocones Array Structured Electrode vol.165, pp.9, 2018, https://doi.org/10.1149/2.0431809jes
- 구리 전해 도금을 이용한 실리콘 관통 비아 채움 공정 vol.54, pp.6, 2016, https://doi.org/10.9713/kcer.2016.54.6.723