DOI QR코드

DOI QR Code

Nucleation and Growth of Bismuth Electrodeposition from Alkaline Electrolyte

  • Zhou, Longping (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Dai, Yatang (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Zhang, Huan (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Jia, Yurong (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Zhang, Jie (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Li, Changxiong (School of Materials Science and Engineering, Southwest University of Science and Technology)
  • Received : 2012.02.13
  • Accepted : 2012.02.03
  • Published : 2012.05.20

Abstract

The early stages of bismuth (Bi) electrodeposition on glass carbon electrode from alkaline electrolyte were studied by cyclic voltammetry, chronoamperometry, scanning electron microscopy, atomic force microscopy and X-ray diffraction. The CV analysis showed that the electrodeposition of Bi was determined to be quasireversible process with diffusion controlled. The current transients for Bi electrodeposition were analyzed according to the Scharifker-Hills model and the Heerman-Tarallo model. It can be concluded that the nucleation and growth mechanism was carried out under a 3D instantaneous nucleation, which was confirmed by SEM analysis. The kinetic growth parameters were obtained through a nonlinear fitting. In addition, the Bi film obtaining at -0.86 V for 1 hour was of compact and uniform surface with good smoothness, small roughness and a very high purity. The Bi film were indexed to rhombohedral crystal structure with preferred orientation of (0 1 2) planes to growth.

Keywords

References

  1. Yang, F. Y.; Strijkers, G. J.; Hong, K.; Reich, D. H.; Searson, P. C.;Chien, C. L. J. Appl. Phys. 2001, 89, 7206. https://doi.org/10.1063/1.1357115
  2. Yang, F. Y.; Liu, K.; Chien, C. L.; Searson, P. C. Phys. Rev. Lett. 1999, 82, 3328. https://doi.org/10.1103/PhysRevLett.82.3328
  3. Cho, S.; Kim, Y.; Olafsen, L. J.; Vurgaftman, I.; Freeman, A. J.; Wong, G. K. L.; Meyer, J. R.; Hoffmann, C. A.; Ketterson, J. B. J. Magn. Magn. Mater. 2002, 239, 201. https://doi.org/10.1016/S0304-8853(01)00557-1
  4. Jiang, S.; Huang, Y. H.; Luo, F.; Du, N.; Yan, C. H. Inorg. Chem. Commun. 2003, 6, 781. https://doi.org/10.1016/S1387-7003(03)00104-7
  5. Tolutis, R. A.; Balevicius, S. Phys. Status Solidi A 2006, 203, 600. https://doi.org/10.1002/pssa.200521019
  6. Li, L.; Zhang, Y.; Li, G.; Zhang, L. Chem. Phys. Lett. 2003, 378, 244. https://doi.org/10.1016/S0009-2614(03)01264-8
  7. Lu, M.; Zieve, R. J.; van Hulst, A.; Jaeger, H. M.; Rosenbaum, T. F.; Radelaar, S. Phys. Rev. B 1996, 53, 1609. https://doi.org/10.1103/PhysRevB.53.1609
  8. Ziegler, J. P. Sol. Energy Mater. Sol. Cells 1999, 56, 477. https://doi.org/10.1016/S0927-0248(98)00192-5
  9. Torresi, S. I. C.; Carlos, I. A. J. Electroanal. Chem. 1996, 414, 11. https://doi.org/10.1016/0022-0728(96)04638-4
  10. Xiao, F.; Hangarter, C.; Yoo, B.; Rheem, Y.; Lee, K. H.; Myung, N. V. Electrochim. Acta 2008, 53, 8103. https://doi.org/10.1016/j.electacta.2008.06.015
  11. Zhou, B.; Li, X. H.; Zhu, J. J. Cryst. Growth Des. 2007, 7, 2276. https://doi.org/10.1021/cg0704955
  12. Hutton, E. A.; Ogorevc, B.; Smyth, M. R. Electroanalysis 2004, 16, 1616. https://doi.org/10.1002/elan.200402979
  13. Lee, G. J.; Lee, H. M.; Rhee, C. K. Electrochem. Commun. 2007, 9, 2514. https://doi.org/10.1016/j.elecom.2007.07.030
  14. Sandnes, E.; Williams, M. E.; Bertocci, U.; Vaudin, M. D.; Stafford, G. R. Electrochim. Acta 2007, 52, 6221. https://doi.org/10.1016/j.electacta.2007.04.002
  15. Yang, M.; Hu, Z. J. Electroanal. Chem. 2005, 583, 46. https://doi.org/10.1016/j.jelechem.2005.04.019
  16. Perelygin, Yu. P.; Yu. Kireev, S.; Yu. Kireev, A. Russ. J. Appl. Chem. 2006, 79, 1200. https://doi.org/10.1134/S1070427206070317
  17. Liu, L.; Wang, L.; Yin, H.; Li, Y.; He, X. Anal. Lett. 2006, 39, 879. https://doi.org/10.1080/00032710600605782
  18. Lu, D.; Wang, J.; Ninivin, C. L.; Mabic, S.; Dimitrakopoulos, T. J. Electroanal. Chem. 2011, 651, 46. https://doi.org/10.1016/j.jelechem.2010.11.002
  19. Petrova, T. P.; Zelenetskaya, K. V.; Rakhmatullina, I. F.; Shapnik, M. S. Prot. Met. 2006, 42, 359. https://doi.org/10.1134/S0033173206040096
  20. Vereecken, P. M.; Sun, L.; Searson, P. C.; Tanase, M.; Reich, D. H.; Chien, C. L. J. Appl. Phys. 2000, 88, 6529. https://doi.org/10.1063/1.1323537
  21. Vereecken, P. M.; Searson, P. C. J. Electrochem. Soc. 2001, 148, 733. https://doi.org/10.1149/1.1406493
  22. Jiang, S.; Huang, Y. H.; Luo, F.; Du, N.; Yan, C. H. Inorg. Chem, Commun. 2003, 6, 781. https://doi.org/10.1016/S1387-7003(03)00104-7
  23. Grujicic, D.; Pesic, B. Electrochim. Acta 2002, 47, 2901. https://doi.org/10.1016/S0013-4686(02)00161-5
  24. Lai, Y.; Liu, F.; Li, J.; Zhang, Z.; Liu, Y. J. Electroanal. Chem. 2010, 639, 187. https://doi.org/10.1016/j.jelechem.2009.11.026
  25. Scharifker, B.; Hills, G. Electrochim. Acta 1983, 28, 879. https://doi.org/10.1016/0013-4686(83)85163-9
  26. Mostany, J.; Mozota, J.; Scharifker, B. R. J. Electroanal. Chem. 1984, 177, 25. https://doi.org/10.1016/0022-0728(84)80208-9
  27. Gunawardena, G.; Hills, G.; Montenegro, I.; Scharifker, B. J. Electroanal. Chem. 1982, 138, 225. https://doi.org/10.1016/0022-0728(82)85080-8
  28. Alvarez, A. E.; Salinas, D. R. Electrochim. Acta 2010, 55, 3714. https://doi.org/10.1016/j.electacta.2010.01.076
  29. Lee, J. J.; Miller, B.; Shi, X.; Kalish, R.; Wheeler, K. A. J. Electrochem. Soc. 2001, 148, C183. https://doi.org/10.1149/1.1346608
  30. Palomar-Pardave, M.; Ramirez, M. T.; Gonzalez, I.; Serruya, A.; Scharifker, B. R. J. Electrochem. Soc. 1996, 143, 1551. https://doi.org/10.1149/1.1836678
  31. Heerman, L.; Tarallo, A. J. Electroanal. Chem. 1999, 470, 70. https://doi.org/10.1016/S0022-0728(99)00221-1
  32. Scharifker, B. R.; Mostany, J. J. Electroanal. Chem. 1984, 177, 13. https://doi.org/10.1016/0022-0728(84)80207-7
  33. Sluyters-Rehbach, M.; Wijenber, J. H. O. J.; Bosco, E.; Sluyters, J. H. J. Electroanal. Chem. 1987, 236, 1. https://doi.org/10.1016/0022-0728(87)88014-2
  34. Heerman, L.; Tarallo, A. J. Electroanal. Chem. 1998, 451, 101. https://doi.org/10.1016/S0022-0728(98)00101-6
  35. Deutscher, R. L.; Fletcher, S. J. Electroanal. Chem. 1988, 239, 17. https://doi.org/10.1016/0022-0728(88)80268-7

Cited by

  1. Electrodeposition of bismuth, tellurium, and bismuth telluride thin films from choline chloride–oxalic acid ionic liquid vol.43, pp.3, 2013, https://doi.org/10.1007/s10800-012-0487-0
  2. Enzymatic glucose biosensor based on bismuth nanoribbons electrochemically deposited on reduced graphene oxide vol.182, pp.13-14, 2015, https://doi.org/10.1007/s00604-015-1545-1
  3. Study of InSb thin films grown on different substrates by the pulsed electrodeposition technique vol.28, pp.18, 2017, https://doi.org/10.1007/s10854-017-7216-8
  4. Wrinkle-stabilized metal-graphene hybrid fibers with zero temperature coefficient of resistance vol.9, pp.33, 2017, https://doi.org/10.1039/C7NR04175F
  5. Potentiostatic Electrochemical Preparation of Bismuth Nanoribbons and its Application in Biologically Poisoning Lead and Cadmium Heavy Metal Ions Detection vol.27, pp.10, 2015, https://doi.org/10.1002/elan.201500255
  6. Effect of Complexing Agents on Properties of Electrodeposited InSb Thin Films vol.47, pp.11, 2018, https://doi.org/10.1007/s11664-018-6608-8
  7. Electrodeposition of Bi Thin Films on n-GaAs(111)B. I. Correlation between the Overpotential and the Nucleation Process vol.122, pp.16, 2012, https://doi.org/10.1021/acs.jpcc.8b01838
  8. Aqueous alkaline electrolytes for dynamic windows based on reversible metal electrodeposition with improved durability vol.8, pp.5, 2012, https://doi.org/10.1039/c9tc05546k