DOI QR코드

DOI QR Code

Solvent Free N-Heterocyclization of Primary Amines to N-Substituted Azacyclopentanes Using Hydrotalcite as Solid Base Catalyst

  • Dixit, Manish (Department of Chemical Engineering And Shah-Schulman Center for Surface Science and Nanotechnology, Faculty of Technology, Dharmsinh Desai University) ;
  • Mishra, Manish (Department of Chemical Engineering And Shah-Schulman Center for Surface Science and Nanotechnology, Faculty of Technology, Dharmsinh Desai University) ;
  • Joshi, P.A. (Department of Chemical Engineering And Shah-Schulman Center for Surface Science and Nanotechnology, Faculty of Technology, Dharmsinh Desai University) ;
  • Shah, D.O. (Department of Chemical Engineering And Shah-Schulman Center for Surface Science and Nanotechnology, Faculty of Technology, Dharmsinh Desai University)
  • Received : 2011.11.12
  • Accepted : 2012.01.30
  • Published : 2012.05.20

Abstract

An ecofriendly catalytic route for selective synthesis of $N$-substituted azacyclopentanes, nitrogen-containing heterocyclic intermediates for many bioactive compounds, was established by carrying out $N$-heterocyclization (di $N$-alkylation) of primary amines with 1,4-dichloro butane (as dialkylating agent) using catalytic amount of hydrotalcite as solid base catalyst. The hydrotalcite was found to be efficient solid base catalyst for di $N$-alkylation of different primary amines (aniline, benzyl amine, cyclohexyl amine and n-butyl amine) giving 82 to 96% conversion (at optimized reaction condition) of 1,4-dichloro butane and > 99% selectivity of respective $N$-substituted azacyclopentanes within 30 min. under solvent free condition. The reaction parameters significantly influence the conversion of 1,4-dichloro butane to $N$-substituted azacyclopentanes. The nature of substituent present on amino group affects the reactivity of amine substrates for di $N$-alkylation reaction with 1,4-dichloro butane. The 1,4-dichloro butane was found to be highly reactive alkylating agent for di $N$-alkylation of amines as compared to 1,4-dihydroxy butane. The reusability of the catalyst and its chemical stability in the reaction was demonstrated.

Keywords

References

  1. Katritzky, A. R.; Pozharskii, A. F. Handbook of Heterocyclic Chemistry, 2nd ed., Pergamon Press: New York, 2000.
  2. Padwa, A.; Bur, S. Chem. Rev. 2004, 104, 2401. https://doi.org/10.1021/cr020090l
  3. Renolds, D. D.; Kenyon, W. O. J. Am. Chem. Soc. 1950, 72, 1597. https://doi.org/10.1021/ja01160a046
  4. Lai, G. Synth. Commun. 2001, 31, 565. https://doi.org/10.1081/SCC-100000583
  5. Bhaskar Kanth, J. V.; Periasamy, M. J. Org. Chem. 1993, 58, 3156. https://doi.org/10.1021/jo00063a041
  6. Tararov, V. I.; Kadyrov, R.; Riermeier, T. H.; Borner, A. Chem. Commun. 2000, 1867.
  7. Desmarets, C.; Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67, 3029. https://doi.org/10.1021/jo016352l
  8. Ju, Y.; Varma, R. S. Org. Lett. 2005, 7, 2409. https://doi.org/10.1021/ol050683t
  9. Ju, Y.; Varma, R. S. J. Org. Chem. 2006, 71, 135. https://doi.org/10.1021/jo051878h
  10. Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173. https://doi.org/10.1016/0920-5861(91)80068-K
  11. Trifiro, F.; Vaccari, A. Hydrotalcite-like Anoinic Clays (Layered Double Hydroxides). In Solid-state Supramolecular Chemistry: Two- and Three- Dimensional Inorganic Networks; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vogtle, F., Eds.; Comprehensive Supramolecular Chemistry, Vol. 7; Pergamon: Oxford, UK, 1996; pp 251.
  12. Kalouskova, R.; Novotna, M.; Vymazal, Z. Polymer Degrad. Stability 2004, 85, 903. https://doi.org/10.1016/j.polymdegradstab.2004.04.008
  13. Bouraada, M.; Lafjah, M.; Ouali, M. S.; de Menorval, L. C. J. Hazard. Mater. 2008, 153, 911. https://doi.org/10.1016/j.jhazmat.2007.09.076
  14. Costantino, U.; Ambrogi, V.; Nocchetti, M.; Perioli, L. Micropor. Mesopor. Mater. 2008, 107, 149. https://doi.org/10.1016/j.micromeso.2007.02.005
  15. Koteswara Rao, K.; Gravelle, M.; Valente, J.-S.; Figueras, F. J. Catal. 1998, 173, 115. https://doi.org/10.1006/jcat.1997.1878
  16. Choudary, B. M.; Lakshmi Kantam, M.; Rahman, A.; Reddy, V. C.; Koteswara Rao, K. Angew Chem. Int. Ed. 2001, 40, 763. https://doi.org/10.1002/1521-3773(20010216)40:4<763::AID-ANIE7630>3.0.CO;2-T
  17. Tichit, D.; Coq, B. CATTECH 2007, 7, 206.
  18. Carpani, I.; Berrettoni, M.; Ballarin, B.; Giorgetti, M.; Scavetta, E.; Tonelli, D. Solid State Ionics 2004, 168, 167. https://doi.org/10.1016/j.ssi.2004.01.032
  19. Terry, P. A. Chemosphere 2004, 57, 541. https://doi.org/10.1016/j.chemosphere.2004.08.006
  20. Vaccari, A. Appl. Clay Sci. 1999, 14, 161. https://doi.org/10.1016/S0169-1317(98)00058-1
  21. Cota, I.; Chimentao, R.; Sueiras, J.; Medina, F. Catal. Commun. 2008, 9, 2090. https://doi.org/10.1016/j.catcom.2008.03.047
  22. Duan, X., Evans, D. G., Eds.; Layered Double Hydroxides, Struc. & Bonding, vol. 119, Springer-Verlag: Berlin Heidelberg, 2006.
  23. Sels, B. F.; De Vos, D. E.; Jacobs, P. A. Catal. Rev. Sci. Eng. 2001, 43, 443. https://doi.org/10.1081/CR-120001809
  24. Vaccari, A. Catal. Today 1998, 41, 53. https://doi.org/10.1016/S0920-5861(98)00038-8
  25. Kishore, D.; Kannan, S. J. Mol. Catal. A: Chem. 2004, 223, 225. https://doi.org/10.1016/j.molcata.2003.09.044
  26. Veloso, C. O.; Henriques, C. A.; Dias, A. G.; Monteiro, J. L. F. Catal. Today 2005, 107-108, 294. https://doi.org/10.1016/j.cattod.2005.07.085
  27. Prescott, H. A.; Li, Z.-J.; Kemnitz, E.; Trunschke, A.; Deutsch, J.; Lieske, H.; Auroux, A. J. Catal. 2005, 234, 119. https://doi.org/10.1016/j.jcat.2005.06.004
  28. Perez, C. N.; Henriques, C. A.; Antunes, O. A. C.; Monteiro, J. L. F. J. Mol. Catal. A: Chem. 2005, 233, 83. https://doi.org/10.1016/j.molcata.2005.02.001
  29. Sharma, S. K.; Parikh, P. A.; Jasra, R. V. J. Mol. Catal. A: Chem. 2008, 286, 55. https://doi.org/10.1016/j.molcata.2008.01.039
  30. Daza, C. E.; Gallego, J.; Moreno, J. A.; Mondragon, F.; Moreno, S.; Molina, R. Catal. Today 2008, 133-135, 357. https://doi.org/10.1016/j.cattod.2007.12.081
  31. Ebitani, K.; Motokura, K.; Mori, K.; Mizugaki, T.; Kaneda, K. J. Org. Chem. 2006, 71, 5440. https://doi.org/10.1021/jo060345l
  32. Mokhtar, M.; Saleh, T. S.; Basahel, S. N. J. Mol. Catal. A: Chem. 2012, 122, 353.
  33. Salvatore, R. N.; Yoon, C. H.; Jung, K. W. Tetrahedron 2001, 57, 7785. https://doi.org/10.1016/S0040-4020(01)00722-0
  34. Shivarkar, A. B.; Gupte, S. P.; Chaudhari, R. V. J. Mol. Catal. A: Chem. 2005, 226, 49. https://doi.org/10.1016/j.molcata.2004.09.025
  35. Moore, J. L.; Taylor, S. M.; Soloshonok, V. A. ARKIVOC 2005, vi, 287.
  36. Salvatore, R. N.; Nagle, A. S.; Jung, K. W. J. Org. Chem. 2002, 67, 674. https://doi.org/10.1021/jo010643c
  37. Esakkidurai, T.; Pitchumani, K. J. Mol. Catal. A: Chem. 2004, 218, 197.
  38. Gawande, M. B.; Deshpande, S. S.; Satam, J. R.; Jayaram, R. V. Catal. Commun. 2007, 8, 576. https://doi.org/10.1016/j.catcom.2006.08.011
  39. Kustrowski, P.; Sulkowska, D.; Chmielarz, L.; Rafalska-Lasocha, A.; Dudek, B.; Dziembaj, R. Micropor. Mesopor. Mater. 2005, 78, 11. https://doi.org/10.1016/j.micromeso.2004.09.011
  40. Abello, S.; Medina, F.; Tichit, D.; Ramirez, J. P.; Groen, J. C.; Sueiras, J. E.; Salagre, P.; Cesteros, Y. Chem. Eur. J. 2005, 11, 728. https://doi.org/10.1002/chem.200400409
  41. Di Cosimo, J. I.; Diez, V. K.; Xu, M.; Iglesia, E.; Apesteguia, C. R. J. Catal. 1998, 178, 499. https://doi.org/10.1006/jcat.1998.2161

Cited by

  1. Butanesulfinyl Imines vol.23, pp.46, 2017, https://doi.org/10.1002/chem.201702616
  2. One-pot synthesis of 1-butylpyrrolidine and its derivatives from aqueous ammonia and 1,4-butandiol over CuNiPd/ZSM-5 catalysts vol.44, pp.39, 2012, https://doi.org/10.1039/d0nj02224a