DOI QR코드

DOI QR Code

Synthesis and Characterization of a Tetrathiafulvalene-Based Polymer

  • Lee, Se-Hyun (Department of Polymer-Nano Science Technology and Polymer Materials Fusion Research Center, Chonbuk National University) ;
  • Wang, Lei (Department of Materials Physics and Chemistry, University of Science and Technology Beijing) ;
  • Hwang, Seok-Ho (Department of Polymer Science and Engineering, Dankook University) ;
  • Lee, Myong-Hoon (Department of Polymer-Nano Science Technology and Polymer Materials Fusion Research Center, Chonbuk National University) ;
  • Jeong, Kwang-Un (Department of Polymer-Nano Science Technology and Polymer Materials Fusion Research Center, Chonbuk National University)
  • Received : 2011.05.10
  • Accepted : 2011.11.22
  • Published : 2012.05.20

Abstract

A novel tetrathiafulvalene (TTF)-based main-chain polymer (6TTF-polymer) was successfully synthesized via a condensation polymerization between a newly synthesized dihydroxy TTF derivative and a malonyl chloride, and its chemical structure was characterized by spectroscopic techniques. Molecular weight of the 6TTF-polymer (9,030 g/mol by gel permeation chromatography) was large enough to form the ductile film. The electrochemical and optical properties of the 6TTF-polymer were further estimated by cyclic voltammetry, ultraviolet and photoluminescence spectroscopes. The highest occupied molecular orbital level ($E_{HOMO}$=-4.79 eV) and band-gap energy ($E_g$=1.91 eV) of the 6TTF-polymer suggested that TTF-based polymer could act as a good electron donating material for the optoelectronic applications.

Keywords

References

  1. Lyskawa, J.; Derf, F. L.; Levillain, E.; Mazari, M.; Salle, M.; Dubois, L.; Viel, P.; Bureau, C.; Palacin, S. J. Am. Chem. Soc. 2004, 126, 12194. https://doi.org/10.1021/ja047411q
  2. Lu, H.; Xu, W.; Zhang, D.; Zhu, D. Chem. Commun. 2005, 4777.
  3. Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimonura, T.; Moriyama, M.; Ita, K.; Kato, T. J. Am. Chem. Soc. 2005, 127, 14769. https://doi.org/10.1021/ja053496z
  4. Mas-Torrent, M.; Durkut, M.; Hadley, P.; Ribas, X.; Rovira, C. J. Am. Chem. Soc. 2004, 126, 984. https://doi.org/10.1021/ja0393933
  5. Kageyama, T.; Ueno, S.; Rakimiya, K.; Aso, Y.; Otsubo, T. Eur. J. Org. Chem. 2001, 2983.
  6. Wang, C.; Bryce, M. R.; Batsanov, A. S.; Goldenberg, L. M.; Howard, J. A. K. J. Mater. Chem. 1997, 7, 1189. https://doi.org/10.1039/a607597e
  7. Gunes, S.; Neugebauer, H. S.; Saricifitci, N. S. Chem. Rev. 2007, 107, 1324. https://doi.org/10.1021/cr050149z
  8. Chen, J.; Cao, Y. Accounts of Chem. Res. 2009, 42, 1709. https://doi.org/10.1021/ar900061z
  9. Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009, 21, 1323. https://doi.org/10.1002/adma.200801283
  10. Mammo, W.; Admassie, S.; Gadisa, A.; Zhang, F.; Inganas, O.; Andersson, M. R. Sol. Energy Mater. Sol. Cells 2007, 91, 1010. https://doi.org/10.1016/j.solmat.2007.02.018
  11. Jeong, K.-U.; Jing, A. J.; Monsdorf, B.; Graham, M. J.; Harris, F. W.; Cheng, S. Z. D. J. Phys. Chem. B 2007, 111, 767. https://doi.org/10.1021/jp066274b
  12. Hwang, S.-H.; Park, S.-J.; Kim, H. Y.; Kuo, S.-W.; Lee, S. H.; Lee, M.-H.; Jeong, K.-U. J. Phys. Chem. B 2009, 113, 5843. https://doi.org/10.1021/jp900666c
  13. Park, S.-J.; Hwang, S.-H.; Kim, N.; Kuo, S.-W.; Kim, H. Y.; Park, S.-K.; Kim, Y.-J.; Nah, C.; Lee, J. H.; Jeong, K.-U. J. Phys. Chem. B 2009, 113, 13499. https://doi.org/10.1021/jp905672s
  14. Jung, J. H.; Kim, S.-E.; Song, E. K.; Ha, K. S.; Kim, N.; Cao, Y.; Tsai, C.-C.; Cheng, S. Z. D.; Lee, S. H.; Jeong, K.-U. Chem. Mater. 2010, 22, 4798. https://doi.org/10.1021/cm101409y
  15. Simonsen, K. B.; Svenstrup, N.; Lau, J.; Simonsen, O.; Mork, P.; Kristensen, G. J.; Becher, J. Synthesis 1996, 407.
  16. Moore, A. J.; Goldenberg, L. M.; Bryce, M. R.; Petty, M. C.; Moloney, J.; Howard, J. K.; Joyce, M. J.; Port, S. N. J. Org. Chem. 2000, 65, 8269. https://doi.org/10.1021/jo000936q
  17. Hirsch, A. The Chemistry of the Fullerenes; Thieme, Stuttgart, 1994.
  18. Wang, L.; Jeong, K.-U.; Lee, M.-H. J. Mater. Chem. 2008, 18, 2657. https://doi.org/10.1039/b805023f
  19. Wang, L.; Park, S.-J.; Lee, S.-H.; Kim, Y.-J.; Kook, Y.- B.; Kuo, S.-W.; Van Horn, R. M.; Cheng, S. Z. D.; Lee, M.-H.; Jeong, K.-U. Chem. Mater. 2009, 21, 3838. https://doi.org/10.1021/cm901381p
  20. Wang, L.; Cho, H.; Lee, S.-H.; Lee, C.; Jeong, K.-U.; Lee, M.-H. J. Mater. Chem. 2011, 21, 60. https://doi.org/10.1039/c0jm02357d
  21. Kimura, S.; Kurai, H.; Mori, T. Tetrahedron 2002, 58, 1119. https://doi.org/10.1016/S0040-4020(01)01223-6
  22. Naraso; Nishida, J.; Kumaki, D.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2006, 128, 9598. https://doi.org/10.1021/ja0630083
  23. Egbe, D. A. M.; Bader, C.; Nowotny, J. Gunther, W.; Klemm, E. Macromolecules 2003, 36, 5459. https://doi.org/10.1021/ma0301395
  24. de Leeuw, D. M.; Simenon, M. M. J.; Brown, A. B.; Einerhand, R. E. F. Synth. Met. 1997, 87, 53. https://doi.org/10.1016/S0379-6779(97)80097-5
  25. Jeppesen, J. O.; Takimiya, K.; Jensen, F.; Brimert, T.; Nielsen, K.; Thorup, N.; Becker, J. J. Am. Chem. Soc. 2000, 122, 9486.
  26. Liu, Y.; Wang, C.; Li, M.; Lai, G.; Shen, Y. Macromolecules 2008, 41, 8823. https://doi.org/10.1021/ma801217v