DOI QR코드

DOI QR Code

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr. (Structural Engineering Department, Federal University of Juiz de Fora)
  • Received : 2011.12.20
  • Accepted : 2012.02.13
  • Published : 2012.03.25

Abstract

In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

Keywords

References

  1. Bathe, K.J. (1996), Finite element procedures, Prentice-Hall.
  2. Becker, A.A. (1992), The boundary element method in engineering, McGraw-Hill.
  3. Belytschko, T. and Lu, Y.Y. (1994), "A variational coupled FE-BE method for transient problems", Int. J. Num. Meth. Eng., 37(1), 91-105. https://doi.org/10.1002/nme.1620370107
  4. Belytschko, T., Liu, W.K. and Moran, B (2000), Nonlinear finite elements for continua & structures, J. Wiley & Sons.
  5. Beskos, D.E. (1987), "Boundary element methods in dynamic analysis", App. Mech. Rev., 40(1), 1-23. https://doi.org/10.1115/1.3149529
  6. Beskos, D.E. (1996), "Boundary element methods in dynamic analysis: Part II", App. Mech. Rev., 50(3), 149-197.
  7. Beskos, D.E. (2003), Dynamic Analysis of Structures and Structural Systems, (Eds. Beskos, D.E. and Maier, G.), Boundary Element Advances in Solid Mechanics, CISM International Centre for Mechanical Sciences, 440, 1- 53.
  8. Crisfield, M.A. (1991), Non-linear Finite Element Analysis of Solid Structures, John Wiley & Sons.
  9. Czygan, O. and von Estorff, O. (2002), "Fluid-structure interaction by coupling BEM and nonlinear FEM", Eng. Anal. Bound. Elem., 26(9), 773-779. https://doi.org/10.1016/S0955-7997(02)00048-6
  10. Dominguez, J. (1993), Boundary elements in dynamics, Computational Mechanics Publications.
  11. Elleithy, W.M., Al-Gahtani, H.J. and El-Gebeily, M. (2001), "Iterative coupling of BE and FE methods in elastostatics", Eng. Anal. Bound. Elem., 25(8), 685-695. https://doi.org/10.1016/S0955-7997(01)00054-6
  12. Elleithy, W. and Grzibovskis, R. (2009), "An adaptive domain decomposition coupled finite element - boundary element method for solving problems in elasto-plasticity", Int. J. Num. Meth. Eng., 79, 1019-1040. https://doi.org/10.1002/nme.2608
  13. Elleithy, W.M. and Tanaka, M. (2002), "BEM-BEM coupling and FEM-BEM coupling via interface relaxation", Eng. Anal. Bound. Elem.,19(9), 37-42.
  14. Firuziaan, M. and von Estorff, O. (2002), Transient 3D soil/structure interaction analyses including nonlinear effects, (Eds. Grundmann, H. and Schuëller, G.I.), Structural Dynamics, EURODYN2002, Swets &Zeitlinger B.V.
  15. Hughes, T.J.R. (1987), The finite element method, Prentice-Hall.
  16. Jacob, B.P. and Ebecken, N.F.F. (1994), "An optimized implementation of the Newmark/Newton-Raphson algorithm for the time integration of non-linear problems", Commun. Numer. Meth. En., 10(12), 983-992. https://doi.org/10.1002/cnm.1640101204
  17. Lin, C.C. (1996), "An iterative finite element-boundary element algorithm", Comput. Struct., 59(5), 899-909. https://doi.org/10.1016/0045-7949(95)00285-5
  18. Mansur W.J. (1983), A time-stepping technique to solve wave propagation problems using the boundary element method, Ph.D. Thesis, University of Southampton, England.
  19. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. - ASCE, 85(7), 67-94.
  20. Pavlatos, G.D. and Beskos, D.E. (1994), "Dynamic elastoplastic analysis by BEM/FEM", Eng. Anal. Bound. Elem., 14(1), 51-63. https://doi.org/10.1016/0955-7997(94)90081-7
  21. Soares, D. (2008a), "A time-domain FEM-BEM iterative coupling algorithm to numerically model the propagation of electromagnetic waves", Comput. Model. Eng.Sci., 32, 57-68.
  22. Soares, D. (2008b), "An optimised FEM-BEM time-domain iterative coupling algorithm for dynamic analyses", Comput. Struct., 86(19-20), 1839-1844. https://doi.org/10.1016/j.compstruc.2008.04.001
  23. Soares, D. (2008c), "Numerical modelling of acoustic-elastodynamic coupled problems by stabilized boundary element techniques", Comput. Mech., 42(6), 787-802. https://doi.org/10.1007/s00466-008-0282-2
  24. Soares, D. (2009a), "Acoustic modelling by BEM-FEM coupling procedures taking into account explicit and implicit multi-domain decomposition techniques", Int. J. Numer. Meth. Eng., 78(9), 1076-1093. https://doi.org/10.1002/nme.2522
  25. Soares, D. (2009b), "An iterative time-domain algorithm for acoustic-elastodynamic coupled analysis considering meshless local Petrov-Galerkin formulations", Comput. Model. Eng.Sci., 54, 201-221.
  26. Soares, D. (2009c), "Fluid-structure interaction analysis by optimised boundary element - finite element coupling procedures", J. Sound Vib., 322(1-2), 184-195. https://doi.org/10.1016/j.jsv.2008.11.026
  27. Soares, D. (2011), Coupled numerical methods to analyze interacting acoustic-dynamic models by multidomain decomposition techniques, Mathematical Problems in Engineering, 2011, 1-28.
  28. Soares, D., Carrer, J.A.M. and Mansur, W.J. (2005a), "Nonlinear elastodynamic analysis by the BEM: an approach based on the iterative coupling of the D-BEM and TD-BEM formulations" Eng. Anal. Bound. Elem., 29, 761-774. https://doi.org/10.1016/j.enganabound.2005.04.005
  29. Soares, D., Godinho, L., Pereira, A. and Dors, C. (2012), "Frequency domain analysis of acoustic wave propagation in heterogeneous media considering iterative coupling procedures between the method of fundamental solutions and Kansa's method", Int. J. Numer. Meth. Eng., 89, 914-938. https://doi.org/10.1002/nme.3274
  30. Soares, D., Mansur, W.J. (2006), "Dynamic analysis of fluid-soil-structure interaction problems by the boundary element method", J. Comput. Phys., 219(2), 498-512. https://doi.org/10.1016/j.jcp.2006.04.006
  31. Soares, D., von Estorff, O. and Mansur, W.J. (2004), "Iterative coupling of BEM and FEM for nonlinear dynamic analyses", Comput. Mech., 34(1), 67-73.
  32. Soares, D., von Estorff, O. and Mansur, W.J. (2005b), "Efficient nonlinear solid-fluid interaction analysis by an iterative BEM/FEM coupling", Int. J. Numer. Meth. Eng., 64(11), 1416-1431. https://doi.org/10.1002/nme.1408
  33. von Estorff O (Ed.) (2000), Boundary Elements in Acoustics - Advances and Applications, WIT Press, Southampton.
  34. von Estorff, O. and Antes, H. (1991) "On FEM-BEM coupling for fluid-structure interaction analysis in the time domain", Int. J. Numer. Meth. Eng., 31(6), 1151-1168. https://doi.org/10.1002/nme.1620310609
  35. von Estorff, O. and Firuziaan, M. (2000), "Coupled BEM/FEM approach for nonlinear soil/structure interaction", Eng. Anal. Bound. Elem., 24(10), 715-725. https://doi.org/10.1016/S0955-7997(00)00054-0
  36. von Estorff, O. and Hagen, C. (2005), "Iterative coupling of FEM and BEM in 3D transient elastodynamics", Eng. Anal. Bound. Elem., 29(8), 775-787. https://doi.org/10.1016/j.enganabound.2005.04.004
  37. von Estorff, O. and Prabucki, M.J. (1990), "Dynamic response in the time domain by coupled boundary and finite elements", Comput. Mech., 6(1), 35-46. https://doi.org/10.1007/BF00373797
  38. Warszawski, A., Soares, D. and Mansur, W.J. (2008), "A FEM-BEM coupling procedure to model the propagation of interacting acoustic-acoustic / acoustic-elastic waves through axisymmetric media", Comput. Method. Appl. M., 197(45-48), 3828-3835. https://doi.org/10.1016/j.cma.2008.03.005
  39. Yan B., Du, J. and Hu, N. (2006), "A domain decomposition algorithm with finite element-boundary element coupling", Appl. Math. Mech - ENGL., 27(4), 519-525. https://doi.org/10.1007/s10483-006-0412-y
  40. Yazdchi, M., Khalili, N. and Valliappan, S. (1999), "Non-linear seismic behavior of concrete gravity dams using coupled finite element-boundary element technique", Int. J. Numer. Meth. Eng., 44(1), 101-130. https://doi.org/10.1002/(SICI)1097-0207(19990110)44:1<101::AID-NME495>3.0.CO;2-4
  41. Yu, G., Mansur, W.J., Carrer, J.A.M. and Lie, S.T. (2001), "A more stable scheme for BEM/FEM coupling applied to two-dimensional elastodynamics", Comput. Struct., 79(8), 811-823. https://doi.org/10.1016/S0045-7949(00)00188-7
  42. Zienkiewicz, O.C., Kelly D.M. and Bettes, P. (1977), "The coupling of the finite element method and boundary solution procedures", Int. J. Numer. Meth. Eng., 11(2), 355-376. https://doi.org/10.1002/nme.1620110210
  43. Zienkiewicz, O.C., Kelly, D.M. and Bettes, P. (1979), Marriage a la mode - the best of both worlds (Finite elements and boundary integrals), (Eds. Glowinski, R., Rodin, E.Y. and Zienkiewicz, O.C.), Energy Methods in Finite Element Analysis, J. Wiley & Sons.
  44. Zienkiewicz, O.C., and Taylor, R.L. (2002), The finite element method, Butterworth-Heinemann, Oxford.

Cited by

  1. Numerical Investigation on the Feasibility of Estimating the Thickness of Europa’s Ice Shell by a Planned Impact vol.29, pp.5, 2016, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000621
  2. Dynamic analysis of elastoplastic models considering combined formulations of the time-domain boundary element method vol.55, 2015, https://doi.org/10.1016/j.enganabound.2014.11.014
  3. Heat conduction analysis by adaptive iterative BEM-FEM coupling procedures vol.73, 2016, https://doi.org/10.1016/j.enganabound.2016.09.003
  4. Dynamic soil-structure interaction analysis for complex soil profiles using unaligned mesh generation and nonlinear modeling approach vol.17, pp.4, 2013, https://doi.org/10.1007/s12205-013-0135-1
  5. Automatic coupling of ABAQUS and a boundary element code for dynamic elastoplastic problems vol.65, 2016, https://doi.org/10.1016/j.enganabound.2015.12.021
  6. Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure vol.4, pp.3, 2015, https://doi.org/10.12989/csm.2015.4.3.263
  7. An effective adaptive time domain formulation to analyse acoustic–elastodynamic coupled models vol.189, 2017, https://doi.org/10.1016/j.compstruc.2017.04.007
  8. Modeling of SH-waves in a fiber-reinforced anisotropic layer vol.10, pp.1, 2016, https://doi.org/10.12989/eas.2016.10.1.091
  9. An Overview of Recent Advances in the Iterative Analysis of Coupled Models for Wave Propagation vol.2014, 2014, https://doi.org/10.1155/2014/426283
  10. Inelastic 2D analysis by adaptive iterative BEM–FEM coupling procedures vol.156, 2015, https://doi.org/10.1016/j.compstruc.2015.05.007
  11. Multi-Domain Analysis by FEM-BEM Coupling and BEM-DD Part II: Convergence vol.353-356, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.353-356.3269
  12. Some Recent Developments in Coupling of Finite Element and Boundary Element Methods - Part I: An Overview vol.580-583, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.580-583.2936
  13. SH-wave propagation in a heterogeneous layer over an inhomogeneous isotropic elastic half-space vol.9, pp.2, 2012, https://doi.org/10.12989/eas.2015.9.2.305
  14. Hydrodynamic coupling distance between a falling sphere and downstream wall vol.7, pp.4, 2012, https://doi.org/10.12989/csm.2018.7.4.407
  15. Iterative coupling of precise integration FEM and TD-BEM for elastodynamic analysis vol.67, pp.4, 2012, https://doi.org/10.12989/sem.2018.67.4.317
  16. A FE-IBE method for linearized nonlinear soil-tunnel interaction in water-saturated, poroelastic half-space: I. Methodology and numerical examples vol.120, pp.None, 2019, https://doi.org/10.1016/j.soildyn.2018.02.035
  17. Finite element method and boundary element method iterative coupling algorithm for 2-D elastodynamic analysis vol.39, pp.3, 2012, https://doi.org/10.1007/s40314-020-01233-4