DOI QR코드

DOI QR Code

Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading

  • Received : 2011.02.25
  • Accepted : 2011.08.21
  • Published : 2012.06.25

Abstract

This paper deals with the structural behaviour of tapered concrete-filled steel composite (TCFSC) columns under eccentric loading. Finite element software LUSAS is used to perform the nonlinear analyses to predict the structural behaviour of the columns. Results from the finite element modelling and existing experimental test are compared to verify the accuracy of the modelling. It is demonstrated that they correlate reasonably well with each other; therefore, the proposed finite element modelling is absolutely accurate to predict the structural behaviour of the columns. Nonlinear analyses are carried out to investigate the behaviour of the columns where the main parameters are: (1) tapered angle (from $0^{\circ}$ to $2.75^{\circ}$); (2) steel wall thickness (from 3 mm to 4 mm); (3) load eccentricity (15 mm and 30 mm); (4) L/H ratio (from 10.67 to 17.33); (5) concrete compressive strength (from 30 MPa to 60 MPa); (6) steel yield stress (from 250 MPa to 495 MPa). Results are depicted in the form of load versus mid-height deflection plots. Effects of various tapered angles, steel wall thicknesses, and L/H ratios on the ultimate load capacity, ductility and stiffness of the columns are studied. Effects of different load eccentricities, concrete compressive strengths and steel yield stresses on the ultimate load capacity of the columns are also examined. It is concluded from the study that the parameters considerably influence the structural behaviour of the columns.

Keywords

References

  1. Bahrami, A., Wan Badaruzzaman, W.H. and Osman, S.A. (2011), "Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading", Struct. Eng. Mech., 39(3), 383-398. https://doi.org/10.12989/sem.2011.39.3.383
  2. Dabaon, M., El-Khoriby, S., El-Boghdadi, M. and Hassanein, M.F. (2009), "Confinement effect of stiffened and unstiffened concrete-filled stainless steel tubular stub columns", J. Constr. Steel Res., 65(8-9), 1846-1854. https://doi.org/10.1016/j.jcsr.2009.04.012
  3. Dai, X. and Lam, D. (2010), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Constr. Steel Res., 66(7), 931-942. https://doi.org/10.1016/j.jcsr.2010.02.003
  4. Ellobody, E. and Young, B. (2006a), "Design and behaviour of concrete-filled cold-formed stainless steel tube columns", J. Eng. Struct., 28(5), 716-728. https://doi.org/10.1016/j.engstruct.2005.09.023
  5. Ellobody, E. and Young, B. (2006b), "Nonlinear analysis of concrete-filled steel SHS and RHS columns", Thin Wall. Struct., 44(8), 919-930. https://doi.org/10.1016/j.tws.2006.07.005
  6. Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
  7. Furlong, R.W. (1968), "Design of steel-encased concrete beam-columns", J. Struct. Div. ASCE, 94(1), 267-281.
  8. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel. Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001
  9. Han, L.H. (2007), "Concrete filled steel tubular columns-Theory and practice", 2nd edition, Beijin, Science Press, (in Chinese).
  10. Han, L.H. and Yao, G.H. (2003), "Behaviour of concrete-filled hollow structural steel (HSS) columns with preload on the steel tubes", J. Constr. Steel Res., 59(12), 1455-1475. https://doi.org/10.1016/S0143-974X(03)00102-0
  11. Han, L.H., Ren, Q.X. and Li, W. (2010), "Tests on inclined, tapered and STS concrete-filled steel tubular (CFST) stub columns", J. Constr. Steel Res., 66(10), 1186-1195. https://doi.org/10.1016/j.jcsr.2010.03.014
  12. Han, L.H., Ren, Q.X. and Li, W. (2011), "Tests on stub stainless steel-concrete-carbon steel double-skin tubular (DST) columns", J. Constr. Steel Res., 67(3), 437-452. https://doi.org/10.1016/j.jcsr.2010.09.010
  13. Hu, H.T. and Schnobrich, W.C. (1989), "Constitutive modeling of concrete by using nonassociated plasticity", J. Mater. Civil Eng., 1(4), 199-216. https://doi.org/10.1061/(ASCE)0899-1561(1989)1:4(199)
  14. Hu, H.T., Huang, C.S. and Chen, Z.L. (2005), "Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination", J. Constr. Steel Res., 61(12), 1692-1712. https://doi.org/10.1016/j.jcsr.2005.05.002
  15. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng.-ASCE, 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  16. Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng.-ASCE, 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
  17. Huang, Y.S., Long, Y.L. and Cai, J. (2008), "Ultimate strength of rectangular concrete-filled steel tubular (CFT) stub columns under axial compression", Steel Compos. Struct., 8(2), 115-128. https://doi.org/10.12989/scs.2008.8.2.115
  18. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012
  19. Liu, D. (2004), "Behaviour of high strength rectangular concrete-filled steel hollow section columns under eccentric loading", Thin Wall. Struct., 42(12), 1631-1644. https://doi.org/10.1016/j.tws.2004.06.002
  20. Liu, D. (2006), "Behaviour of eccentrically loaded high-strength rectangular concrete-filled steel tubular columns", J. Constr. Steel Res., 62(8), 839-846. https://doi.org/10.1016/j.jcsr.2005.11.020
  21. Liu, D. and Gho, W.M. (2005), "Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns", Thin Wall. Struct., 43(8), 1131-1142. https://doi.org/10.1016/j.tws.2005.03.007
  22. LUSAS Standard User's Manual, (2006), Version 14, Kingston upon Thames, Surrey, UK.
  23. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng.-ASCE, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  24. Mursi, M. and Uy, B. (2003), "Strength of concrete filled steel box columns incorporating interaction buckling", J. Struct. Eng.-ASCE, 129(5), 626-639. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(626)
  25. Petrus, C., Hamid, H.A., Ibrahim, A. and Parke, G. (2010), "Experimental behaviour of concrete filled thin walled steel tubes with tab stiffeners", J. Constr. Steel Res., 66(7), 915-922. https://doi.org/10.1016/j.jcsr.2010.02.006
  26. Richart, F.E., Brandzaeg, A. and Brown, R.L. (1928), A study of the failure of concrete under combined compressive stresses, Bull. 185. Champaign, IL, USA: University of Illinois Engineering Experimental Station.
  27. Saenz, L.P. (1964), Discussion of "Equation for the stress-strain curve of concrete" by Desayi, P. and Krishnan, S., J. Am. Concrete Inst., 61, 1229-1235.
  28. Starossek, U., Falah, N. and Lohning, T. (2010), "Numerical analyses of the force transfer in concrete-filled steel tube columns", Struct. Eng.-Mech., 35(2), 241-256. https://doi.org/10.12989/sem.2010.35.2.241
  29. Tao, Z. and Han, L.H. (2007), "Behaviour of fire-exposed concrete-filled steel tubular beam columns repaired with CFRP wraps", Thin Wall. Struct., 45(1), 63-67. https://doi.org/10.1016/j.tws.2006.11.004
  30. Tao, Z., Han, L.H. and Wang, D.Y. (2007), "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin Wall. Struct., 45(5), 517-527. https://doi.org/10.1016/j.tws.2007.04.003
  31. Tao, Z., Uy, B., Han, L.H. and Wang, Z.B. (2009), "Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression", Thin Wall. Struct., 47(12), 1544-1556. https://doi.org/10.1016/j.tws.2009.05.006
  32. Tomii, M. (1991), "Ductile and strong columns composed of steel tube infilled concrete and longitudinal steel bars", Special volume, Proceedings of the third international conference on steel-concrete composite structures, Fukuoka, Japan: Association of Steel-Concrete Structures.
  33. Uy, B. (1998a), "Concrete-filled fabricated steel box columns for multistorey buildings: behaviour and design", Prog. Struct. Eng. Mater., 1(2), 150-158. https://doi.org/10.1002/pse.2260010207
  34. Uy, B. (1998b), "Ductility, strength and stability of concrete-filled fabricated steel box columns for tall buildings", Struct. Des. Tall Build., 7(2), 113-133. https://doi.org/10.1002/(SICI)1099-1794(199806)7:2<113::AID-TAL94>3.0.CO;2-I
  35. Uy, B., Tao, Z., Liao, F.Y. and Han, L.H. (2009), "Behaviour of slender square concrete-filled stainless steel columns subject to axial load", Proceedings of the 11th Nordic steel construction conference, held in Malmo, Sweden.
  36. Yang, Y.F. and Han, L.H. (2009), "Experiments on rectangular concrete-filled steel tubes loaded axially on a partially stressed cross-sectional area", J. Constr. Steel Res., 65(8-9), 1617-1630. https://doi.org/10.1016/j.jcsr.2009.04.004
  37. Zhong, S.T. (1995), "Concrete-filled steel tubular structures'', Hei Lung Jiang Technology Publication Co., China (in Chinese).

Cited by

  1. Confining effect of concrete in double-skinned composite tubular columns vol.14, pp.5, 2014, https://doi.org/10.12989/cac.2014.14.5.613
  2. Explicit Simulation of Circular CFST Stub Columns with External Steel Confinement under Axial Compression vol.13, pp.1, 2020, https://doi.org/10.3390/ma13010023
  3. Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners vol.34, pp.1, 2012, https://doi.org/10.12989/scs.2020.34.1.123
  4. GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading vol.25, pp.1, 2012, https://doi.org/10.12989/cac.2020.25.1.001
  5. Effect of axial loading conditions and confinement type on concrete-steel composite behavior vol.25, pp.2, 2012, https://doi.org/10.12989/cac.2020.25.2.095