• Title/Summary/Keyword: steel yield stress

Search Result 350, Processing Time 0.022 seconds

The Specified Minimum Yield Stress of SM570TMC in CFT Composite Columns (SM570TMC강을 이용한 콘크리트충전강관 합성기둥의 설계기준 항복강도)

  • Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.205-213
    • /
    • 2008
  • The objective of this study is to evaluate the yield stress of SM570TMC CFT column subject to axial force. These columns were evaluated and compared by statistical tests, during which the displacements and axial loads of column specimens were measured. Test results showed that the yield stress of CFT columns under axial load could be predicted using the previously proposed the yield stress of steel columns.

The Specified Minimum Yield Stress of SM570TMC in Composite Columns (SM570TMC강의 매입형 합성기둥 적용시 설계기준 항복강도에 관한 연구)

  • Lee, Myung Jae;Oh, Young Suk;Lee, Eun Teak
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.195-203
    • /
    • 2008
  • This paper aims to evaluate the yield stress of SM570TMC concrete-filed H-shape steel columns subjected to axial force. These columns were evaluated and compared using quasi-static tests. The displacements and the axial loads column specimens were measured during the tests, and test results showed that the yield stress of concrete-filed H-shape steel columns subjected to axial load could be predicted using the previously proposed yield stress of steel columns.

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

Analysis and Environment on Bond Characteristic of High-Strength Steel RC Members (고장력 철근을 사용한 RC부재의 부착특성에 관한 해석 및 실험)

  • 곽성태;윤영수;송영철;우상균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.443-448
    • /
    • 2001
  • This paper presents a bond characteristics of high strength steel reinforced concrete members. High strength steel is what yield strength is higher than that of normal strength steel. So, the amount of flexural steel needed in R.C. members can be decreased. In result, it is expected that the workability and structure quality can improve and man power can minimize. For this purpose, specimens were made and tested with experimental parameters, such as concrete strength, steel diameter and yield strength. The result showed that under same tensile force of steel, in case of substituting normal strength steel with high strength steel, maximum bond stress increased and development length didn't almost change. In addition, the governing equation of bond and bond stress verse slip relationship were derived and compared with test values such as maximum bond stress, slip and bond stiffness.

  • PDF

Dynamic Material Property of Mn-B Alloy High-Strength Steel (Mn-B 합금계 고강도 강의 동적 물성)

  • Choi, Chang;Hong, Sungin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.124-131
    • /
    • 1996
  • The dynamic material property of Mn-B ally high-strength steel is investigated through the rod impact test which is one of simple test methods for the analysis of the material behavior under high-strain-rate. Rod impact test is performed to produce the deformed shape of rod and analyzed by the one-dimensional theory based on conservation law and the two-dimensional hydrocode AUTODYN-2D. The dynamic yield stress is determined and compared with the static yield stress to investigate the strain-rate sensitivity of Mn-B alloy high-strength steel.

  • PDF

On the effect of GFRP fibers on retrofitting steel shear walls with low yield stress

  • Edalati, S.A.;Yadollahi, Y.;Pakar, I.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1453-1461
    • /
    • 2015
  • In this article the non-linear behavior of the shear wall with low yield stress retrofitted with Glass Fiber Reinforced Polymer (GFRP) is investigated under pushover loading. The models used in this study are in ${\frac{1}{2}}$ scale of one story frame and simple steel plates with low yield stress filled the frame span. The models used were simulated and analyzed using finite elements method based on experimental data. After verification of the experimental model, various parameters of the model including the number of GFRP layers, fibers positioning in one or two sides of the wall, GFRP angles in respect to the wall and thickness of the steel plate were studied. The results have shown that adding the GFRP layers, the ultimate shear capacity is increased and the amount of energy absorbed is decreased. Besides, the results showed that using these fibers in low-thickness plates is effective and if the positioning angle of the fibers on the wall is diagonal, its behavior will improve.

Evaluation of Microstructures and Mechanical Property of Variously Heat Treated 0.85% Carbon Steel by Magnetic Method (자기적 방법에 의한 0.85% 탄소강의 열처리에 따른 미세조직 및 기계적 성질 평가)

  • Byeon, Jai-Won;Kwun, S.I.
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.81-87
    • /
    • 2003
  • Microstructures and mechanical properties of variously heat treated 0.85% carbon steel(eutectoid steel) were evaluated by magnetic property measurements. Microstructural analysis (pearlite interstellar spacing), measurement of mechanical properties(Rockwell hardness, yield stress, fracture stress) and magnetic properties(coercivity, remanence, hysteresis loss, saturation magnetization) were performed to clarify mutual relationships among these parameters. Water quenched specimens with martensite structure showed much higher coercivity and remanence than air cooled or furnace cooled specimens with pearlite structure. The linear dependence of coercivity and remanence on pearlite interlamellar spacing as well as on Rockwell hardness, yield stress and fracture stress was observed in the pearlitic steel. Hysteresis loss and saturation magnetization showed no distinct trend with pearlite interlamellar spacing.

Low-Cycle Fatigue Failure Prediction of Steel Yield Energy Dissipating Devices Using a Simplified Method

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1384-1396
    • /
    • 2018
  • One of the failure modes observed in steel yield energy dissipating devices (SYEDs) excited by a strong earthquake would be the low-cycle fatigue failure. Fatigue cracks of a SYED are prone to initiate at the notch areas where stress concentration is usually occurred, which is demonstrated by the cyclic tests and analyses carried out for this study. Since the fatigue failure of SYEDs dramatically deteriorates their structural capacities, the thorough investigation on their fatigue life is usually required. To do this, sophisticated modeling with considering a time-consuming and complicate fracture mechanism is generally needed. This study makes an effort to investigate the low-cycle fatigue life of SYEDs predicted by a simplified method utilizing damage indices and fatigue prediction equations that are based on the plastic strain amplitudes obtained from typical finite element analyses. This study shows that the low-cycle fatigue failure of SYEDs predicted by the simplified method can be conservatively in good agreement with the test results of SYED specimens prepared for experimental validation.

Local Buckling and Inelastic Behaviour of 800 MPa High-Strength Steel Beams (800MPa급 고강도강 보 부재의 국부좌굴 및 비탄성 거동)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Kim, Dae-Kyung;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.479-490
    • /
    • 2012
  • Flexural tests on full-scale H-shaped beams, built up from high-strength steels (HSB800 and HSA800) with a nominal tensile strength of 800 MPa, was carried out to study the effect of flange slenderness of high-strength steel on flexural strength and rotation capacity. The primary objective was to investigate the appropriateness of extrapolating current stability criteria (originally developed for ordinary steel) to high-strength steel. The performance of high-strength steel specimens was very satisfactory from the strength, but not from the rotation capacity, perspective. The inferior rotation capacity of high-strength steel beams was shown to be directly attributable to the absence of a distinct yield plateau and the high yield ratio of the material. Residual stress measurements reconfirmed that the magnitude of the residual stress is almost independent of the yield stress of the base metal.

Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP

  • Ou, Jialing;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.189-200
    • /
    • 2021
  • The compressive strength of circular concrete filled steel tubular (C-CFST) stubs strengthened with carbon fiber reinforced polymer (CFRP) is studied theoretically. According to previous experimental results, the failure process and mechanism of circular CFRP-concrete filled steel tubular (C-CFRP-CFST) stubs is analyzed, and the loading process is divided into 3 stages, i.e., elastic stage, elasto-plastic stage and failure stage. Based on continuum mechanics, the theoretical model of C-CFRP-CFST stubs under axial compression is established based on the assumptions that steel tube and concrete are both in three-dimensional stress state and CFRP is in uniaxial tensile stress state. Equations for calculating the yield strength and the ultimate strength of C-CFRP-CFST stubs are deduced. Theoretical predictions from the presented equations are compared with existing experimental results. There are a total of 49 tested specimens, including 15 ones for comparison of yield strength and 44 ones for comparison of ultimate strength. It is found that the predicted results of most specimens are within an error limit of 10%. Finally, simplified equations for calculating both yield strength and ultimate strength of C-CFRP-CFST stubs are proposed.