Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Adams, R.D., Cawley, P., Pye, C.J. and Stone, B.J. (1978), "A vibration technique for nondestructive assessing the integrity of structures", J. Mech. Eng. Sci., 20(2), 93-100. https://doi.org/10.1243/JMES_JOUR_1978_020_016_02
- Analog Devices (2010), "Datasheet of AD5933", Available at http://www.analog.com.
- Brincker, R., Zhang. L. and Andersen, P. (2001), "Modal identification of output-only using frequency domain decomposition", Smart Mater. Struct., 10(3), 441-445. https://doi.org/10.1088/0964-1726/10/3/303
- Cho, S., Jo, H., Jang, S., Park, J., Jung, H.J., Yun, C.B., Spencer, Jr, B.F. and Seo., J.W. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: data analyses", Smart Struct. Syst., 6(5-6), 461-480. https://doi.org/10.12989/sss.2010.6.5_6.461
- Clough, R.W. and Penzien, J. (1993), Dynamics of structures, 2nd Ed., McGraw-Hill.
- Crossbow Technology (2007), "Imote2 hardware reference manual, revision A", Available at http://www.xbow.com.
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Farrar, C.R. (2001), Historical overview of structural health monitoring, Lecture Notes on Structural Health Monitoring Using Statistical Pattern Recognition, Los Alamos Dynamics, Los Alamos, NM.
- Illinois Structural Health Monitoring Project (2011), Imote2 for Structural Health Monitoring: User's Guide, University of Illinois at Urbana-Champaign
- Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer, Jr, B.F. and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart Struct. Syst., 6(5-6), 439-459. https://doi.org/10.12989/sss.2010.6.5_6.439
- Jo, H., Rice, J.A., Spencer, B.F. and Nagayama, T. (2010), "Development of a high-sensitivity accelerometer board for structural health monitoring", Proceedings of the SPIE, San Diego, USA.
- Kim, J.T., Park, J.H. and Lee, B.J. (2006), "Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions", Eng. Struct., 29(7), 1354-1365.
- Kim, J.T., Park, J.H., Hong, D.S. and Ho, D.D. (2011), "Hybrid acceleration-impedance sensor nodes on Imote2- platform for damage monitoring in steel girder connections", Smart Struct. Syst., 7(5), 393-416. https://doi.org/10.12989/sss.2011.7.5.393
- Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
- Koo, K.Y. (2008), Structural health monitoring methods for bridges using ambient vibration and impedance measurements, Doctoral Dissertation, Korea Advanced Institute of Science and Technology, Deajeon. Korea.
- Liang, C., Sun, F.P. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(2), 171-186. https://doi.org/10.1088/0964-1726/5/2/006
- Lynch, J.P., Wang, W., Loh, K.J., Yi, J.H. and Yun, C.B. (2006), "Performance monitoring of the Geumdang bridge using a dense network of high-resolution wireless sensors", Smart Mater. Struct., 15(6), 1561-1575. https://doi.org/10.1088/0964-1726/15/6/008
- Mascarenas, D.L., Todd, M.D., Park, G., and Farrar, C.R., (2007), "Development of an impedance-based wireless sensor node for structural health monitoring", Smart Mater. Struct., 16(6), 2137-2145. https://doi.org/10.1088/0964-1726/16/6/016
- Memsic Co. (2010), "Datasheet of ISM400", Available at http://www.memsic.com.
- Miller, T.I., Spencer, B.F., Li, J. and Jo, H. (2010), Solar energy harvesting and software enhancements for autonomous wireless smart sensor networks, NSEL Report Series, NSEL-022.
- Nagayama, T., Spencer, B.F. and Rice, J.A. (2009), "Autonomous decentralized structural health monitoring using smart sensors", Struct. Health Monit., 16, 842-859.
- Park, G., Kabeya, K., Cudney., H.H. and Inman, D.J. (1999), "Impedance-based structural health monitoring for temperature varying applications", JSME Int. J. A-Solid M., 42(2), 249-258. https://doi.org/10.1299/jsmea.42.249
- Park, G., Sohn, H., Farrar, C. and Inman, D. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib., 35, 451-463. https://doi.org/10.1177/05831024030356001
- Park, J.H., Kim, J.T., Hong, D.S., Mascarenas, D. and Lynch, J.P. (2010), "Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements", Smart Struct. Syst., 6(5-6), 711-730. https://doi.org/10.12989/sss.2010.6.5_6.711
- Raghavan, A. and Cesnik, E.S. (2007), "Review of guided-wave structural health monitoring", Shock Vib., 39(2), 91-114. https://doi.org/10.1177/0583102406075428
- Rice, J.A., Mechitov, K., Sim, S.H., Nagayama, T., Jang, S., Kim, R., Spencer, Jr, B.F., Agha, G. and Fujino, Y. (2010), "Flexible smart sensor framework for autonomous structural health monitoring", Smart Struct. Syst., 6(5-6), 423-438. https://doi.org/10.12989/sss.2010.6.5_6.423
- Shimada, T. (1995), A study on the maintenance and management of the tension measurement for the cable of bridge, Ph.D. Dissertation, Kobe University, Japan.
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, B.R. (2003), A review of structural health monitoring literature: 1996-2001, Los Alamos National Laboratory Report, LA-13976-MS, Los Alamos, NM.
- Spencer, B.F. and Cho, S. (2011), "Wireless smart sensor technology for monitoring civil infrastructure: Technological developments and full-scale applications", Proceeding of the World Congress on Advances in Structural Engineering and Mechanics (ASEM'11 Plus), Seoul, Korea.
- Spencer, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Health Monit., 11(4), 349-368. https://doi.org/10.1002/stc.48
- Straser, E.G. and Kiremidjian, A.S. (1998), A modular, wireless damage monitoring system for structure, Technical Report 128, John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
- Stubbs, N. and Kim, J.T. (1996), "Damage localization in structures without baseline modal parameters", AIAA J., 34(8), 1644-1649. https://doi.org/10.2514/3.13284
- Sun, F.P., Chaudhry, Z., Rogers, C.A. and Majmundar, M. (1995), "Automated real-time structure health monitoring via signature pattern recognition", Proceedings of the SPIE, San Diego, USA.
- Yi, J.H. and Yun, C.B. (2004), "Comparative study on modal identification methods uing output-only information", Struct. Eng. Mech., 17(7), 927-944.
- Zui, H., Shinke, T. and Namita, Y. (1996), "Practical formulas for estimation of cable tension by vibration method", J. Struct. Eng - ASCE, 122(6), 651-656. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(651)
Cited by
- Traffic Safety Evaluation for Railway Bridges Using Expanded Multisensor Data Fusion vol.31, pp.10, 2016, https://doi.org/10.1111/mice.12210
- Repetitive model refinement for structural health monitoring using efficient Akaike information criterion vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1329
- Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders vol.17, pp.6, 2016, https://doi.org/10.12989/sss.2016.17.6.881
- Temperature-Compensated Damage Monitoring by Using Wireless Acceleration-Impedance Sensor Nodes in Steel Girder Connection vol.8, pp.9, 2012, https://doi.org/10.1155/2012/167120
- Field Implementation of Wireless Vibration Sensing System for Monitoring of Harbor Caisson Breakwaters vol.8, pp.12, 2012, https://doi.org/10.1155/2012/597546
- Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique vol.12, pp.3_4, 2013, https://doi.org/10.12989/sss.2013.12.3_4.381
- Development of a Multitype Wireless Sensor Network for the Large-Scale Structure of the National Stadium in China vol.9, pp.12, 2013, https://doi.org/10.1155/2013/709724
- Direct simulation of the tensioning process of cable-stayed bridges vol.121, 2013, https://doi.org/10.1016/j.compstruc.2013.03.010
- Wind and traffic-induced variation of dynamic characteristics of a cable-stayed bridge - benchmark study vol.17, pp.3, 2016, https://doi.org/10.12989/sss.2016.17.3.491
- System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network vol.11, pp.5, 2013, https://doi.org/10.12989/sss.2013.11.5.533
- Remote structural health monitoring systems for next generation SCADA vol.11, pp.5, 2013, https://doi.org/10.12989/sss.2013.11.5.511
- FOS-Based Prestress Force Monitoring and Temperature Effect Estimation in Unbonded Tendons of PSC Girders vol.30, pp.2, 2017, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000608
- Optimal Sensor Placement for Stay Cable Damage Identification of Cable-Stayed Bridge under Uncertainty vol.9, pp.12, 2013, https://doi.org/10.1155/2013/361594
- Wireless sensor network for decentralized damage detection of building structures vol.12, pp.3_4, 2013, https://doi.org/10.12989/sss.2013.12.3_4.399
- Real-time remote monitoring: the DuraMote platform and experiments towards future, advanced, large-scale SCADA systems vol.11, pp.4, 2015, https://doi.org/10.1080/15732479.2014.951861
- Estimation of flexibility matrix of beam structures using multisensor fusion vol.1, pp.2, 2016, https://doi.org/10.1080/24705314.2016.1179494
- Wireless monitoring of typhoon-induced variation of dynamic characteristics of a cable-stayed bridge vol.20, pp.2, 2015, https://doi.org/10.12989/was.2015.20.2.293
- Rapid full-scale expansion joint monitoring using wireless hybrid sensor vol.12, pp.3_4, 2013, https://doi.org/10.12989/sss.2013.12.3_4.415
- Structural identification of cable-stayed bridge under back-to-back typhoons by wireless vibration monitoring vol.88, 2016, https://doi.org/10.1016/j.measurement.2016.03.032
- Recent R&D activities on structural health monitoring in Korea vol.3, pp.1, 2016, https://doi.org/10.12989/smm.2016.3.1.091
- Simplified planar model for damage estimation of interlocked caisson system vol.12, pp.3_4, 2013, https://doi.org/10.12989/sss.2013.12.3_4.441
- Wireless structural health monitoring of stay cables under two consecutive typhoons vol.1, pp.1, 2014, https://doi.org/10.12989/smm.2014.1.1.047
- Advances and challenges in impedance-based structural health monitoring vol.4, pp.4, 2012, https://doi.org/10.12989/smm.2017.4.4.301
- PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage vol.22, pp.1, 2018, https://doi.org/10.12989/sss.2018.22.1.057
- A New Insight to Vibration Characteristics of Spans under Random Moving Load: Case Study of 38 Bridges in Ho Chi Minh City, Vietnam vol.2020, pp.None, 2012, https://doi.org/10.1155/2020/1547568
- A statistical approach for evaluating crack defects in structures under dynamic responses vol.36, pp.2, 2012, https://doi.org/10.1080/10589759.2019.1699086
- Structural health monitoring of bridge spans using Moment Cumulative Functions of Power Spectral Density (MCF-PSD) and deep learning vol.17, pp.1, 2012, https://doi.org/10.3233/brs-210183
- Anchor Force Monitoring Using Impedance Technique with Single-Point Mount Lead-Zirconate-Titanate Interface: A Feasibility Study vol.11, pp.9, 2012, https://doi.org/10.3390/buildings11090382
- A Low-Cost Prestress Monitoring Method for Post-Tensioned RC Beam Using Piezoelectric-Based Smart Strand vol.11, pp.10, 2012, https://doi.org/10.3390/buildings11100431