DOI QR코드

DOI QR Code

Multi-objective optimal design of laminate composite shells and stiffened shells

  • Lakshmi, K. (CSIR-Structural Engineering Research Centre) ;
  • Rama Mohan Rao, A. (CSIR-Structural Engineering Research Centre)
  • Received : 2011.10.07
  • Accepted : 2012.08.09
  • Published : 2012.09.25

Abstract

This paper presents a multi-objective evolutionary algorithm for combinatorial optimisation and applied for design optimisation of fiber reinforced composite structures. The proposed algorithm closely follows the implementation of Pareto Archive Evolutionary strategy (PAES) proposed in the literature. The modifications suggested include a customized neighbourhood search algorithm in place of mutation operator to improve intensification mechanism and a cross over operator to improve diversification mechanism. Further, an external archive is maintained to collect the historical Pareto optimal solutions. The design constraints are handled in this paper by treating them as additional objectives. Numerical studies have been carried out by solving a hybrid fiber reinforced laminate composite cylindrical shell, stiffened composite cylindrical shell and pressure vessel with varied number of design objectives. The studies presented in this paper clearly indicate that well spread Pareto optimal solutions can be obtained employing the proposed algorithm.

Keywords

References

  1. Armentano, V.A. and Claudio, J.E. (2004), "An application of a multi-objective tabu search algorithm to a Bicriteria flow shop problem", J. Heuristics, 10(5), 463-481. https://doi.org/10.1023/B:HEUR.0000045320.79875.e3
  2. Arora, J.S. (2004), Introduction to Optimum Design, 2nd Edition, Elsevier/Academic Press, New York.
  3. Baker, A.A., Dutton, S. and Kelly, D. (2004), Composite Materials for Aircraft Structures, 2nd Edition, Reston, VA: American Institute of Aeronautics and Astronautics.
  4. Chankong, V. and Haimes, Y.Y. (1983), Multiobjective Decision Making Theory and Methodology, Elsevier Science, New York.
  5. Coello, C.A. and Toscano Pulido, G. (2005), "Multiobjective structural optimization using a micro-genetic algorithm", Struct. Multidiscip. O., 30(5), 388-403. https://doi.org/10.1007/s00158-005-0527-z
  6. Deb, K. (2001), Multi-objective Optimization Using Evolutionary Algorithms, Wiley, Chichester, UK.
  7. Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. (2000), "A fast and elitist multiobjective genetic algorithm for multi-objective optimization: NSGAII", Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, 849-858.
  8. Irisarri, F.X., Bassir, D.H., Carrere, N. and Maire, J.F. (2009), "Multiobjective stacking sequence optimization for laminated composite structures", Compos. Sci. Technol., 69(7-8), 983-990. https://doi.org/10.1016/j.compscitech.2009.01.011
  9. Knowles, J. and Corne, D. (2000), "Approximating the non-dominated front using the Pareto archived evolution strategy", Evol. Comput., 8(2), 149-172. https://doi.org/10.1162/106365600568167
  10. LeRiche, R. and Haftka, R.T. (1993), "Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm", AIAA J., 31, 951-956. https://doi.org/10.2514/3.11710
  11. Messac, A. (1996), "Physical programming: effective optimization for computational design", AIAA J., 34(1), 149-158. https://doi.org/10.2514/3.13035
  12. Miettinen, K.M. (1999), Nonlinear Multiobjective Optimization, Kluwer, Boston.
  13. Nemeth, M.P. (1995), "Importance of Anisotropy on buckling of compression-Loaded symmetric composite plates", AIAA J., 24, 1831.
  14. Park, I.J., Jung, S.N., Kim, D.H. and Yun, C.Y. (2009), "General purpose cross-section analysis program for composite rotor blades", Int. J. Aeron. Space Sic., 10, 77-85.
  15. Pelletier, J.L. and Vel, S. (2006), "Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass", Comput. Struct., 84(29-30), 2065-2080. https://doi.org/10.1016/j.compstruc.2006.06.001
  16. Rama Mohan Rao, A. and Arvind, N. (2005), "A scatter search algorithm for stacking sequence optimisation of laminate composites", Compos. Struct., 70(4), 383-402. https://doi.org/10.1016/j.compstruct.2004.09.031
  17. Rama Mohan Rao, A. and Arvind, N. (2007), "Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing", Struct. Eng. Mech., 25(2), 239-268. https://doi.org/10.12989/sem.2007.25.2.239
  18. Rama Mohan Rao, A. and Shyju, P.P. (2008), "Development of a hybrid meta-heuristic algorithm for combinatorial optimisation and its application for optimal design of laminated composite cylindrical skirt", Comput. Struct., 86, 796-815. https://doi.org/10.1016/j.compstruc.2007.05.033
  19. Rama Mohan Rao, A. and Lakshmi, K. (2009), "Multi-objective optimal design of hybrid laminate composite structures using scatter search", J. Compos. Mater., 43, 2157-2182. https://doi.org/10.1177/0021998309339221
  20. Rama Mohan Rao, A. and Shyju, P.P. (2010), "A new meta-heuristic algorithm for multi-objective optimal design of Hybrid Laminate Composite structures", Int. J. Comput. Aided Civil Infra Struct. Eng., 25, 149-170. https://doi.org/10.1111/j.1467-8667.2009.00610.x
  21. Rama Mohan Rao, A. and Lakshmi, K. (2011), "Discrete hybrid PSO algorithm for design of laminate composites with multiple objectives", J. Reinf. Plast. Compos., 30(20), 1703-1707. https://doi.org/10.1177/0731684411417198
  22. Rama Mohan Rao, A. and Lakshmi, K. (2012), "Optimal design of stiffened laminate composite cylinder using a hybrid SFLA algorithm", J. Compos. Mater. doi:10.1177/0021998311435674 (online)
  23. Sen, P. and Yang, J.B. (1998), Multiple Criteria Decision Support in Engineering Design, Springer-Verlag, London.
  24. Sepehri, A., Daneshmand, F. and Jafarpur, K. (2012), "A modified particle swarm approach for multi-objective optimization of laminated composite structures", Struct. Eng. Mech., 42(3), 335-352. https://doi.org/10.12989/sem.2012.42.3.335
  25. Sun, G. and Renjie Mao. (1993), "Optimization of stiffened laminated-composite circular-cylindrical shells for buckling", Compos. Struct., 23, 53-60. https://doi.org/10.1016/0263-8223(93)90074-Z
  26. Suppapitnarm, A., Seffen, K.A., Parks, G.T. and Clarkson, P.J. (2000), "A simulated annealing algorithm for multiobjective optimization", Eng. Opt., 33(1), 59-85. https://doi.org/10.1080/03052150008940911
  27. Tasi, J. (1966), "Effect of heterogeneity on the stability of composite cylindrical shells under axial compression", AIAA J., 4, 1058-1062. https://doi.org/10.2514/3.3604
  28. Todoroki, A. and Haftka, R.T. (1998), "Stacking sequence optimization by a genetic algorithm with a new recessive gene like repair strategy", Compos. Part B, 29(3), 277-285. https://doi.org/10.1016/S1359-8368(97)00030-9
  29. Topal, U. and Uzman, U. (2010), "Multi-objective optimization of angle-ply laminated plates for maximum buckling load", Finite Elem. Analy. Des., 46(3), 3273-279.
  30. Topal, U. (2009), "Multi-objective optimization of laminated composite cylindrical shells for maximum frequency and buckling load", Mater. Des., 30(7), 2584-2594. https://doi.org/10.1016/j.matdes.2008.09.020
  31. Yao, A. and Xiao, F. (1998), "Free vibration analysis of an orthotropic circular cylindrical shell of laminated composite", J. Southw. Petrol. Univ., 11(2), 65-85.
  32. Zitzler, E. and Thiele, L. (1998), "An evolutionary algorithm for multi-objective optimization: The strength Pareto approach", Technical Report No. 43, Computer Engineering and Networks Laboratory, Zurich Switzerland.

Cited by

  1. Aspect ratio factor for finite element method analysis of axially symmetric cylindrical shell walls vol.6, pp.4, 2014, https://doi.org/10.3846/2029882X.2014.996255
  2. Multi-objective optimal design of laminated composite skirt using hybrid NSGA vol.48, pp.6, 2013, https://doi.org/10.1007/s11012-012-9676-5
  3. Material optimization of functionally graded heterogeneous cylinder for wave propagation vol.50, pp.25, 2016, https://doi.org/10.1177/0021998315622051
  4. Robust optimization of reinforced concrete folded plate and shell roof structure incorporating parameter uncertainty vol.56, pp.5, 2015, https://doi.org/10.12989/sem.2015.56.5.707
  5. Multi-objective optimal design of composite box beam using hybrid adaptive harmony search with dynamically reconfigurable harmony memory pp.2041-2983, 2019, https://doi.org/10.1177/0954406218761486