DOI QR코드

DOI QR Code

Nonlinear analysis of cable-supported structures with a spatial catenary cable element

  • Vu, Tan-Van (Faculty of Civil Engineering, Ho Chi Minh City University of Architecture) ;
  • Lee, Hak-Eun (Civil, Environmental & Architectural Engineering, Korea University) ;
  • Bui, Quoc-Tinh (Department of Civil Engineering, University of Siegen)
  • 투고 : 2011.11.03
  • 심사 : 2012.08.09
  • 발행 : 2012.09.10

초록

This paper presents a spatial catenary cable element for the nonlinear analysis of cable-supported structures. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the equilibrium equation. As a result, the element stiffness matrix and nodal forces are determined, wherein the effect of self-weight and pretension are taken into account. In the case of the initial cable tension is given, an algorithm for form-finding of cable-supported structures is proposed to determine precisely the unstressed length of the cables. Several classical numerical examples are solved and compared with the other available numerical methods or experiment tests showing the accuracy and efficiency of the present elements.

키워드

참고문헌

  1. Andreu, A., Gil, L. and Roca, P. (2006), "A new deformable catenary element for the analysis of cable net structures", Comput. Struct., 84 (29-30), 1882-1890. https://doi.org/10.1016/j.compstruc.2006.08.021
  2. Ali, H. and Abdel-Ghaffar, A. (1995), "Modeling the nonlinear seismic behavior of cable- stayed bridges with passive control bearings", Comput. Struct., 54(3), 461-492. https://doi.org/10.1016/0045-7949(94)00353-5
  3. Argyris, J. and Scharpf, D. (1972), "Large deflection analysis of prestressed networks", J. Struct. Div., ASCE, 98(3), 633-654.
  4. Cohen, E. and Perrin, H. (1957), "Design of multi-level guyed towers: analysis", J. Struct. Div., ASCE, 83, 1356.1.
  5. Coyette, J. and Guisset, P. (1988), "Cable network analysis by a nonlinear programming technique", Eng. Struct., 10(1), 41-46. https://doi.org/10.1016/0141-0296(88)90015-6
  6. Chen, Z.H., Wu, Y.J., Yin, Y. and Shan, C. (2010), "Formulation and application of multi-node sliding cable element for the analysis of Suspend-Dome structures", Finite Elem. Anal. D., 46(9), 743-750. https://doi.org/10.1016/j.finel.2010.04.003
  7. Ding, Q.S., Chen, A.R. and Xiang, H.F. (2002), "Coupled flutter analysis of long-span bridges by multimode and full-order approaches", J. Wind Eng. Ind. Aerodyn., 90, 1981-1993. https://doi.org/10.1016/S0167-6105(02)00315-X
  8. Ernst, H. (1965), "Der E-modul von seilen unter beruecksichtigung des durchhanges", Der Bauingenieur, 40(2), 52-55. (in German)
  9. Gambhir, M. and Batchelor, B. (1977), "A finite element for 3-D prestressed cable nets", Int. J. Numer. Meth. Eng., 11(11), 1699-1718. https://doi.org/10.1002/nme.1620111106
  10. Gambhir, M. and Batchelor, B. (1979), "Finite element study of the free vibration of a 3-D cable networks", Int. J. Solids Struct., 15(2), 127-136. https://doi.org/10.1016/0020-7683(79)90017-9
  11. Jain, A., Jones, N.P. and Scanlan, R.H. (1996), "Coupled aeroelastic and aerodynamic response analysis of longspan bridges", J. Wind Eng. Ind. Aerod., 60, 69-80. https://doi.org/10.1016/0167-6105(96)00024-4
  12. Jayaraman, H. and Knudson, W. (1981), "A curved element for the analysis of cable structures", Comput. Struct., 14(3-4), 325-333. https://doi.org/10.1016/0045-7949(81)90016-X
  13. Karoumi, R. (1999), "Some modeling aspects in the nonlinear nite element analysis of cable supported bridges", Comput. Struct., 71, 397-412. https://doi.org/10.1016/S0045-7949(98)00244-2
  14. Kim, D.Y., Kim, H.Y., Kim, Y.H., Kwak, Y.H., Park, J.G. and Shin, S.H. (2010), "Wind engineering studies for the New Millennium Bridge (1st Site)", Technical Report, DAEWOO Institute of Construction Technology, South Korea.
  15. Krishna, P. (1978), Cable-suspended Roofs, McGraw-Hill, New York.
  16. Kwan, A. (1998), "A new approach to geometric nonlinearity of cable structures", Comput. Struct., 67(4), 243-252. https://doi.org/10.1016/S0045-7949(98)00052-2
  17. Lewis, W., Jones, M. and Rushton, K. (1984), "Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs", Comput. Struct., 18(6), 989-997. https://doi.org/10.1016/0045-7949(84)90142-1
  18. Liu, H. and Chen, Z. (2012), "Structural behavior of the suspen-dome structures and the cable dome structures with sliding cable joints", Struct. Eng. Mech., 43(1), 53-70. https://doi.org/10.12989/sem.2012.43.1.053
  19. Michalos, J. and Birnstiel, C. (1960), "Movements of a cable due to changes in loading". J. Struct. Div., ASCE, 86(12), 23-38.
  20. Mollmann, H. (1970), "Analysis of plane prestressed cable structures", J. Struct. Div., ASCE, 96, 2059.
  21. O'Brien, W. and Francis, A. (1964), "Cable movements under two-dimensional loads", J. Struct. Div., ASCE, 90(3), 89-123.
  22. Ozdemir, H. (1979), "A finite element approach for cable problems", Int. J. Solids Struct., 15(5), 427-437. https://doi.org/10.1016/0020-7683(79)90063-5
  23. Peyrot, A.H. and Goulois, A.M. (1978), "Analysis of flexible transmission lines", J. Struct. Div., ASCE, 104, 763-779.
  24. Peyrot, A.H. and Goulois, A.M. (1979), "Analysis of cable structures", Comput. Struct., 10(5), 805-813. https://doi.org/10.1016/0045-7949(79)90044-0
  25. Poskitt, T.J. and Livesley, R.K. (1963), "Structural analysis of guyed masts", Proc. Inst. Civ. Eng., 14, 373.
  26. Saafan, S.A. (1970), "Theoretical analysis of suspension roofs", J. Struct. Div., ASCE, 96(2), 393-404.
  27. Sarkar, P.P., Jones, N.P. and Scanlan, R.H. (1994), "Identification of aeroelastic parameters of flexible bridges", J. Eng. Mech., ASCE, 120(8), 1718-1742. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:8(1718)
  28. Starossek, U. (1998), "Complex notation in flutter analysis", J. Struct. Eng., ASCE, 124(8), 975-977. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:8(975)
  29. Such, M., Jimenez-Octavio, J.R., Carnicero, A. and Lopez-Garcia, O. (2009), "An approach based on the catenary equation to deal with static analysis of three dimensional cable structures", Struct. Eng., 31(9), 2162-2170. https://doi.org/10.1016/j.engstruct.2009.03.018
  30. Sufian, F.M.A. and Tempelman, A.B. (1992), "On the non-linear analysis of pre-tensioned cable net structures", Struct. Eng., 4(2), 147-158.
  31. Tibert, G. (1998), Numerical Analyses of Cable Roof Structures, Royal Institute of Technology, Dept. of Structural Engineering.
  32. Vu, T.V. (2010), "Aeroelastic flutter analysis of long-span bridges", Ph.D. dissertation, Korea University, South Korea.
  33. Vu, T.V., Kim, Y.M., Lee, H.Y., Yoo, S.Y. and Lee, H.E. (2011), "Flutter analysis of bridges through use of by state space method", Proceedings of the 8th Int. Conf. Struct. Dyn., EURODYN 2011, Belgium, 3083-3090.
  34. Wang, C., Wang, R., Dong, S. and Qian, R. (2003), "A new catenary cable element", Int. J. Space Struct., 18(4), 269-275. https://doi.org/10.1260/026635103322987986
  35. West, H.H. and Kar, A.K. (1973), "Dicretized initial-value analysis of cable nets", Int. J. Solids Struct., 9, 1403-1420. https://doi.org/10.1016/0020-7683(73)90048-6
  36. Yang, Y.B. and Tsay, J.Y. (2007), "Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method", Int. J. Struct. Stab. Dyn., 7(4), 571-588. https://doi.org/10.1142/S0219455407002435

피인용 문헌

  1. Nonlinear analysis methods based on the unstrained element length for determining initial shaping of suspension bridges under dead loads vol.128, 2013, https://doi.org/10.1016/j.compstruc.2013.06.014
  2. Analytical Solutions for Catenary Domes vol.141, pp.2, 2015, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000896
  3. Experimental and numerical investigation on the static and dynamic behaviors of cable-stayed bridges with CFRP cables vol.111, 2017, https://doi.org/10.1016/j.compositesb.2016.11.048
  4. Determination of the Strain-Free Configuration of Multispan Cable vol.2015, 2015, https://doi.org/10.1155/2015/890474
  5. New Method for Shape Finding of Self-Anchored Suspension Bridges with Three-Dimensionally Curved Cables vol.20, pp.2, 2015, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000642
  6. Coupled flutter analysis of long-span bridges using full set of flutter derivatives vol.20, pp.4, 2016, https://doi.org/10.1007/s12205-015-0271-x
  7. Shape finding of suspension bridges with interacting matrix vol.20, pp.8, 2016, https://doi.org/10.1080/19648189.2015.1084379
  8. Statics of Shallow Inclined Elastic Cables under General Vertical Loads: A Perturbation Approach vol.6, pp.2, 2018, https://doi.org/10.3390/math6020024
  9. Analysis of cable structures through energy minimization vol.62, pp.6, 2012, https://doi.org/10.12989/sem.2017.62.6.749
  10. Optimal design of spoke double-layer cable-net structures based on an energy principle vol.74, pp.4, 2012, https://doi.org/10.12989/sem.2020.74.4.533