Acknowledgement
Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)
References
- Abbott, I.H., Von Doenhoff, A.E. and Stivers, L.S. (1945), Summary of Airfoil Data, NACA report 824, Langley Field.
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, New York.
- Bathe, K.J. and Chaudhary, A. (1982), "On the displacement formulation of torsion of shafts with rectangular cross-section", Int. J. Numer. Meth. Eng., 18, 1565-1568. https://doi.org/10.1002/nme.1620181010
- Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), "Towards improving the MITC9 shell element", Comput. Struct., 81, 477-489. https://doi.org/10.1016/S0045-7949(02)00483-2
- Bucalem, M.L. and Bathe, K.J. (1993), "Higher-order MITC general shell elements", Int. J. Numer. Meth. Eng., 36, 3729-3754. https://doi.org/10.1002/nme.1620362109
- Chapelle, D. and Bathe, K.J. (2003), The Finite Element Analysis of Shells - Fundamentals, Springer.
- Dutta, A. and White, D.W. (1992), "Large displacement formulation of a three-dimensional beam element with cross-sectional warping", Comput. Struct., 45, 9-24. https://doi.org/10.1016/0045-7949(92)90340-6
- Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general nonlinear analysis", Eng. Comput., 1, 77-88. https://doi.org/10.1108/eb023562
- Gjelsvik, A. (1981), The Theory of Thin Walled Bars, Wiley, New York.
- Gonçalves, R., Ritto-Corrêa, M. and Camotim, D. (2010), "A new approach to the calculation of cross-section deformation modes in the framework of generalized beam theory", Comput., Mech., 46, 759-781. https://doi.org/10.1007/s00466-010-0512-2
- Gruttmann, F., Sauer, R. and Wagner, W. (1999), "Shear stresses in prismatic beams with arbitrary crosssections", Int. J. Numer. Meth. Eng., 45, 865-889. https://doi.org/10.1002/(SICI)1097-0207(19990710)45:7<865::AID-NME609>3.0.CO;2-3
- Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82, 945-962. https://doi.org/10.1016/j.compstruc.2004.02.004
- Lee, P.S. and Bathe, K.J. (2005), "Insight into finite element shell discretizations by use of the basic shell mathematical model", Comput. Struct., 83, 69-90. https://doi.org/10.1016/j.compstruc.2004.07.005
- Lee, P.S. and McClure, G. (2006), "A general 3D L-section beam finite element for elastoplastic large deformation analysis", Comput. Struct., 84, 215-229. https://doi.org/10.1016/j.compstruc.2005.09.013
- Lee, P.S. and McClure, G. (2007), "Elastoplastic large deformation analysis of a lattice steel tower structure and comparison with full-scale tests", Int. J. Constr. Steel Res., 63, 709-717. https://doi.org/10.1016/j.jcsr.2006.06.041
- Lee, P.S. and Noh, H.C. (2010), "Inelastic buckling behavior of steel members under reversed cyclic loading", Eng. Struct., 32, 2579-2595. https://doi.org/10.1016/j.engstruct.2010.04.031
- Lee, P.S., Noh, H.C. and Choi, C.K. (2008), "Geometry-dependent MITC method for a 2-node iso-beam element", Struct. Eng. Mech., 29(2), 203-221. https://doi.org/10.12989/sem.2008.29.2.203
- Lee, S.W. and Kim, Y.H. (1987), "A new approach to the finite element modelling of beams with warping effect", Int. J. Numer. Meth. Eng., 24, 2327-2341. https://doi.org/10.1002/nme.1620241207
- Pi, Y.L., Bradford, M.A. and Uy, B. (2005), "Nonlinear analysis of members curved in space with warping and Wagner effects", Int. J. Solids Struct., 42, 3147-3169. https://doi.org/10.1016/j.ijsolstr.2004.10.012
- Prokiæ, A. (1996), "New warping function for thin-walled beams. I: theory", J. Struct. Eng., 122, 1437-1442. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1437)
- Roark, R.J. (1965), Formulas for Stress and Strain, McGraw Hill, New York.
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw Hill, New York.
- Vlasov, V.Z. (1961), Thin-walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem.
- Zivkovic, M., Koji , M., Slavkovi , R. and Grujovi , N. (2001), "A general beam finite element with deformable cross-section", Comput. Meth. Appl. Mech. Eng., 190, 2651-2680. https://doi.org/10.1016/S0045-7825(00)00259-0
Cited by
- Error estimation for the automated multi-level substructuring method vol.106, pp.11, 2016, https://doi.org/10.1002/nme.5161
- Modeling the warping displacements for discontinuously varying arbitrary cross-section beams vol.131, 2014, https://doi.org/10.1016/j.compstruc.2013.10.013
- One-dimensional finite element formulation with node-dependent kinematics vol.192, 2017, https://doi.org/10.1016/j.compstruc.2017.07.008
- An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams vol.47, pp.2, 2013, https://doi.org/10.12989/sem.2013.47.2.247
- Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors vol.281, 2014, https://doi.org/10.1016/j.cma.2014.07.023
- An enhanced AMLS method and its performance vol.287, 2015, https://doi.org/10.1016/j.cma.2015.01.004
- The MITC3 shell finite element enriched by interpolation covers vol.134, 2014, https://doi.org/10.1016/j.compstruc.2013.12.003
- An efficient warping model for elastoplastic torsional analysis of composite beams vol.178, 2017, https://doi.org/10.1016/j.compstruct.2017.07.041
- Torsional analysis of a single-bent leaf flexure vol.54, pp.1, 2015, https://doi.org/10.12989/sem.2015.54.1.189
- A mixed beam model with non-uniform warpings derived from the Saint Venànt rod vol.121, 2013, https://doi.org/10.1016/j.compstruc.2013.03.017
- A higher order beam model for thin-walled structures with in-plane rigid cross-sections vol.84, 2015, https://doi.org/10.1016/j.engstruct.2014.11.008
- Geometrically nonlinear finite element analysis of functionally graded 3D beams considering warping effects vol.132, 2015, https://doi.org/10.1016/j.compstruct.2015.07.024
- Modeling of helically stranded cables using multiple beam finite elements and its application to torque balance design vol.151, 2017, https://doi.org/10.1016/j.conbuildmat.2017.06.052
- Simple Expression of the Ultimate Lateral Resistance of Piles on Sand based on Active Pile Length vol.71, pp.4, 2015, https://doi.org/10.2208/jscejseee.71.I_329
- Nonlinear torsional analysis of 3D composite beams using the extended St. Venant solution vol.62, pp.1, 2017, https://doi.org/10.12989/sem.2017.62.1.033
- 동시회전의 화이버 단면 보 요소를 이용한 평면 구조물의 재료 및 기하 비선형 해석 vol.30, pp.3, 2012, https://doi.org/10.7734/coseik.2017.30.3.255
- Ballasting plan optimization for operation of a 2D floating dry dock vol.74, pp.4, 2020, https://doi.org/10.12989/sem.2020.74.4.521
- Towards improving finite element solutions automatically with enriched 2D solid elements vol.76, pp.3, 2012, https://doi.org/10.12989/sem.2020.76.3.379
- Simulation of bending and torsion tests of non-welded and welded direct-formed rectangular hollow sections vol.1001, pp.None, 2012, https://doi.org/10.1088/1757-899x/1001/1/012069
- FEM simulation of bending and torsion tests of similar size RHS but of the different production options vol.234, pp.None, 2012, https://doi.org/10.1051/e3sconf/202123400079
- Strategy to Improve Edge-Based Smoothed Finite Element Solutions Using Enriched 2D Solid Finite Elements vol.11, pp.8, 2012, https://doi.org/10.3390/app11083476
- A new solid-beam approach based on first or higher-order beam theories for finite element analysis of thin to thick structures vol.200, pp.None, 2012, https://doi.org/10.1016/j.finel.2021.103655