Acknowledgement
Supported by : Korea Science & Engineering Foundation
References
- Ahmed, G. and Hurst, J.P. (1999), "Modeling pore pressure, moisture, and temperature in high strength concrete columns exposed to fire", Fire Technology, 35(3), 232-262. https://doi.org/10.1023/A:1015436510431
- Ali, F., Nadjai, A. and Choi, S. (2010), "Numerical and experimental investigation of the behavior of high strength concrete columns in fire", Eng. Struct., 32(5), 1236-1243. https://doi.org/10.1016/j.engstruct.2009.12.049
- Cheng, F.P., Kodur, V.K.R. and Wang, T.C. (2004), "Stress-strain curves for high strength concrete at elevated temperatures", Journal of Materials in Civil Engineering, 16(1), 84-90. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(84)
- Choi, J.H., Kim, H.S. and Haj-ali, R. (2010), "Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures", Steel and Composite Structures, 10(2), 129-149. https://doi.org/10.12989/scs.2010.10.2.129
- Chowdhurya, E.U., Bisbya, L.A., Greena, M.F. and Kodur, V.K.R. (2007), "Investigation of insulated FRPwrapped reinforced concrete columns in fire", Fire Safety Journal, 42(6-7), 452-460. https://doi.org/10.1016/j.firesaf.2006.10.007
- Chung, K., Park, S. and Choi, S. (2009), "Fire resistance of concrete filled square steel tube columns subjected to eccentric axial load", International J. Steel Structures, 9(1), 69-76. https://doi.org/10.1007/BF03249481
- Eurocode 2. Design of concrete structures, Part 1-2: General rules-Structural fire design. BS EN 1992-1-2.
- Eurocode 3. Design of Steel Structures, Part 1-2: Fire Resistance. 1993-1-2 European pre-standard.
- Han, L.H. (2001), "Fire performance of concrete filled steel tubular beam-columns", J. Constr. Steel Res., 57(6), 695-709.
- Han, L.H., Huo, J.S. and Wang, Y.C. (2005), "Compressive and flexural behavior of concrete filled steel tubes after exposure to standard fire", J. Constr. Steel Res., 61(7), 882-901. https://doi.org/10.1016/j.jcsr.2004.12.005
- Han, L.H., Yang, Y.F., Yang, H. and Huo, J. (2002), "Residual strength of concrete-filled RHS columns after exposure to the ISO-834 standard fire", Thin Walled Structures, 40(12), 991-1012. https://doi.org/10.1016/S0263-8231(02)00044-7
- Harmathy, T.Z. (1993), "Fire Safety Deign and Concrete", Concrete Design and Construction Series, Longman Scientific & Technical, 32-37.
- Hirohata, M. and Kim, Y.C. (2008), "Generality verification for factors dominating mechanical behavior under compressive loads of steel structural members corrected by heating/pressing", Steel Struct., 8(2), 83-90.
- ISO 834-1 (1999), Fire resistance tests-elements of building constructions-Part 1: General requirements.
- Kalifa, P., Menneteau F.D. and Quenard, D. (2000), "Spalling and pore pressure in HPC at high temperatures", Cement and Concrete Research, 30(12), 1915-1927. https://doi.org/10.1016/S0008-8846(00)00384-7
- Kim, H.S. (2004), "Strength evaluation of fire damaged high strength concrete by nondestructive tests", M.S Thesis, Ewha Women's University, Seoul, Korea.
- Kodur, V.K.R., Cheng, F.P., Wang, T.C. and Sultan M.A. (2003), "Effect of Strength and Fiber Reinforcement on Fire Resistance of High-Strength Concrete Columns", J. Struct. Eng., 129(2), 253-259. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(253)
- Kodur, V.K.R., Wang, T.C. and Cheng, F.P. (2004), "Predicting the fire resistance behavior of high strength concrete columns", Cement and Concrete Composites, 26(2), 141-153. https://doi.org/10.1016/S0958-9465(03)00089-1
- Kodur, V.K.R. and Sultan, M.A. (2003), "Effect of temperature on thermal properties of high-strength concrete", J. Materials in Civil Engineering, 15(2), 101-107. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(101)
- KS F 2403 (2010), Korean Industrial Standards. Korea Agency for Technology and Standards, Seoul, Korea.
- Nassif, A. (2006), "Postfire full stress-strain response of fire-damaged concrete", Fire and Materials, 30(5), 323-332. https://doi.org/10.1002/fam.911
- Shin, M.K. (2004), "Strength Evaluation of Fire-damaged High Strength Concrete", Master's Degree Thesis, Ewha Women's University, Seoul, Korea.
- Yu, J.T., Lu, Z.D. and Xie, Q. (2007), "Nonlinear analysis of SRC columns subjected to fire", Fire Safety J., 42(1), 1-10. https://doi.org/10.1016/j.firesaf.2006.06.006
Cited by
- Experimental research on the fire performance of a special cross-shaped composite column with a high-strength concrete-filled steel tubular core 2018, https://doi.org/10.1177/1369433217753426
- Seismic performances of centrifugally-formed hollow-core precast columns with multi-interlocking spirals vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1259
- Scattering analysis of curved FSS using Floquet harmonics and asymptotic waveform evaluation technique vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.561
- Depth-dependent evaluation of residual material properties of fire-damaged concrete vol.20, pp.4, 2017, https://doi.org/10.12989/cac.2017.20.4.503
- Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns vol.6, pp.5, 2012, https://doi.org/10.12989/acc.2018.6.5.485
- Compressive and flexural behaviors of ultra-high strength concrete encased steel members vol.33, pp.6, 2012, https://doi.org/10.12989/scs.2019.33.6.849
- Behaviour of ultra-high strength concrete encased steel columns subject to ISO-834 fire vol.38, pp.2, 2021, https://doi.org/10.12989/scs.2021.38.2.121