참고문헌
- Abramovitch, R.A., Huang, B.Z. and Abramovitch, D.A. (1999), "In situ decomposition of PCBs in soil using microwave energy", Chemoshere, 38(10), 2227-2236. https://doi.org/10.1016/S0045-6535(98)00441-X
-
Achilleos, A., Hapeshi. E., Xekoukoulotakis. N.P., Mantzavinos, D. and Fatta-Kassinos, D. (2010), "Factors affecting diclofenac decomposition in water by UV-A/
$TiO_{2}$ photocataysis". Chem. Eng. J., 161(1-2), 53-59. https://doi.org/10.1016/j.cej.2010.04.020 - Adewuyi, Y.G. (2005), "Sonochemistry in environmental remediation. Heterogeneous sonocatalytic oxidation processes for the treatment of pollutants in water", Environ. Sci. Technol., 39(10), 8557-8570. https://doi.org/10.1021/es0509127
- Agustina, T.E., Ang, H.M. and Vareek, V.K. (2005), "A review of synergistic effect of photocatalysis and ozonization on waste water treatment (review)", J. Photoch. Photobio. C; Photoch. Rev., 6(4), 264-273. https://doi.org/10.1016/j.jphotochemrev.2005.12.003
- Almendrala, M.D. (2009, April 2), "Membrane separation processes: A substantial technology for water purification, industrial wastewater recycling and reuse," The Philippine Star (Science and Technology), (http://www.philstar.com/Article.aspex?articleid=454243).
- Ameri, A., Gholami, M., Nasseri, N. and Matsuura, T. (2004), "Modification of PES hollow fiber membranes characteristics for more efficient water treatment process", Iranian J. Public health, 33(2), 49-55.
- Andreozzi, R., Caprio, V., Insola, A. and Marotta, R. (1999), "Advanced oxidation process (AOP) for water purification and recovery", Catalysis Today, 53(1), 51-59. https://doi.org/10.1016/S0920-5861(99)00102-9
- Auffan, M., Shipley, H.J., Yean, S., Kan, A.T., Tomson, M,, Rose, J. and Bottero, J.Y. (2007), "Nanomaterials as Adsorbents", In Environmental Nanotechnology: applications and impacts of nanomaterials, Edts: M.R. Wiesner and J YBottero, McGraw Hill, New York, 2007, Chapter 10.
- Ayol, A. (2005), "Enzymatic treatment effects on dewaterability of anaerobically digested bioso;ids-I: Performance evaluation", Process Biochem., 40(7), 2427-2434. https://doi.org/10.1016/j.procbio.2004.09.023
- Ayol, A. and Dentel, S.K. (2005), "Enzyme treatment effects on dewaterability of anaerobically digested biosolids-II: Laboratory characterizations of drainability and filterability", Process Biochem., 40(7), 2435-2434. https://doi.org/10.1016/j.procbio.2004.09.024
- Bahnemann, D. (2004), "Photocatalytic water treatment: solar energy applications", Solar Energy, 77, 445-459. https://doi.org/10.1016/j.solener.2004.03.031
- Baker, J.S. and Judd S.J. (1990), "Magnetic Amelioration of scale formation", Water Resour., 30(2), 247-260.
- Bhaumic, D., Majumdar, S., Fan, Q. and Sirkar, K.K. (2004), "Hollow fiber membrane degassing in ultrapure water and microbiocontamination", J. Membrane Sci., 235(1-2), 31-41. https://doi.org/10.1016/j.memsci.2003.12.022
- Blanco, H.P., Sublet, J., Nguyen, Q.T. and Schaetzel, P. (2006), "Formation and morphologystudies of different polysulfones-based membranes made by wet phase inversion process", J. Membrane Sci., 283(1-2), 27-37. https://doi.org/10.1016/j.memsci.2006.06.011
- Bo, L.L., Quan, X., Wang, X.C. and Chen, S. (2008), "Preparation and characteristic s of carbonsupported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwaveassisted catalytic oxidation", J. Hazardous Materials, 157(1), 179-186. https://doi.org/10.1016/j.jhazmat.2007.12.111
- Botes. M. and Cloete, T.E. (2010), "The Potential of Nanofibers and Nanobiocides in Water Purification", In Nanotechnology in Water Treatment Applications. edts. Cloete TE, Kwaadsteniet, MD, Botes, M and Lopez-Romero JM, Caister Academic Press, chapter 3.
- Burgess, J.E. and Pletschke, B.I. (2008) "Hydrolytic enzymes in sewage sludge treatment: A mini review", Water SA, 34(3), 343-350.
- Buschmann. W.E. (2010), "Semipermeable polymers and method for production same", US2010/0006495 A1
- Cao, J.H., Zhu, B.K., Lu, H. and Xu, Y.Y. (2005), "Study on polypropylene hollow fiber based recirculated membrane bioreactor for treatment of municipal wastewater", Desalination, 183(1-3), 431-438. https://doi.org/10.1016/j.desal.2005.02.056
- Chang, J.S. (2001), "Recent development of plasma pollution control technology: a critical review", Sci. Technol. Advance Mater., 2(1-4), 571-576. https://doi.org/10.1016/S1468-6996(01)00139-5
-
Chen, J., Liu, M., Zhang, L., Zhang, J. and Jin, L. (2003), "Application of nano
$TiO_{2}$ towards polluted water treatment combined with electro-photochemical method", Water Res., 37(16), 3815-3820. https://doi.org/10.1016/S0043-1354(03)00332-4 - Chen, S.F., Zheng, J., Li, LY. and Jiang, S.Y. (2005), "Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insight into nonfouling properties of zwitterionic materials", J. Am. Chem. Soc., 127(41), 14473-14478. https://doi.org/10.1021/ja054169u
- Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C. (2010), "Recent developments in photocatalytic water treatment technology: A review", Water Res., 44(10), 2997-3027. https://doi.org/10.1016/j.watres.2010.02.039
- Cicek, N. (2003), "A review of membrane biorectors and their potential application in the treatment of agricultural wastewater", Can. Biosystems Eng., 45, 6.37-6.49.
- Cloete T.E. et al. (editor), Nanotechnology in water treatment application. Caister Academic Press, 2010, ISBN: 978-1-904455-66-0.
- Coey, J.M.D. and Cass, S. (2000), "Magnetic water treatment", J. Magnetism Magnetic Materials, 209(1-3), 71-74. https://doi.org/10.1016/S0304-8853(99)00648-4
- Comninellis, C., Kapalka, A., Malato, S., Parsons, S.A Poulios, I. and Mantzavinos, D. (2008), "Perspective Advanced oxidation processes for water treatment: advances and trends for R&D", J. Chem. Technol. Biotechnol., 83(6), 769-776. https://doi.org/10.1002/jctb.1873
- Davidson, A. (2007) "Increase of biogas production at wastewater treatment plants; addition of urban organic waste and pretreatment of sludge", Water and Environmental Engineering, Department of Chemical Engineering, Diss. Lund University. ISBN: 978-91-7422-143-5.
- Davidson, A., Wawrzynczyk, J., Norrlow, O. and Jansen, L.C. (2007a) "Strategies for enzyme dosing to enhance anaerobic digestion of sewage sludge", J. Residuals Sci. Technol., 4(1).
- Elimelech, M., Chen, W.H. and Waypa J.J. (1994), "Measuring of zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer", Desalination, 95(3), 269-286. https://doi.org/10.1016/0011-9164(94)00064-6
- Esplugas, S., Bila, D.M., Krause, L,G. and Dezotti, M. (2007), "Ozonization and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents", J. Hazard Mater., 149(3), 631-642. https://doi.org/10.1016/j.jhazmat.2007.07.073
- Fatta-Kassinos, D., Hapeshi, E., Malato, S., Mantzavinos, D., Rizzo, L. and Xekoukoulotakis, P. (2010), "Removal of xenobiotic compounds from water and waste water by advanced oxidation process' in 'Xenobioticsin the urban water cycle: mass flows, environmental pprocesses, mitigation treatment strategies' Edts. D. Fatta-Kassinos et al. Environmental Pollution, Vol. 16 Springer Science, p387, 2010.
- Feng. C., Khulbe K.C., Matsuura, T., Gopal, R., Kaur, S., Ramakrishna, S. and Khayet, M. (2008), "Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane", J. Membrane Sci., 311(1-2), 1-6. https://doi.org/10.1016/j.memsci.2007.12.026
- Goddard, J.M. and Hotchkiss, J.H. (2007), "Polymer surface modification for the attachment of bioactive compounds", Progress Polymer Sc., 32(7), 698-725. https://doi.org/10.1016/j.progpolymsci.2007.04.002
- Gogate, P.R. and Pandit, A.B. (2004), "A review of imperative technologies for waste water treatment I: oxidation technologies at ambient conditions", Adv. Environ. Res., 8(3-4), 501-551. https://doi.org/10.1016/S1093-0191(03)00032-7
- Gurgo e Cirne, D. (2006), "Evaluation of biological strategies to enhance hydrolysis during anaerobic digestion of complex waste", Diss. Lund University, ISBN: 91-89627-4105.
- Harder, P., Grunze, M., Dahint, R., Whitesides, G.M. and Laibinis, P.E. (1998), "Molecular Conformation in Oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption", J. Phys. Chem. B, 102(2), 426-436.
- Health, 15.11, 2010, http://www.dw-world.de/dw/article/0,,6224975,00.html "Teabag filter cleans water with nanotechnology."
- Henmi, M. (2010), "Sub-nanometer pore in RO membrane was observed by PALS." Polymer Preprints, Japan, 59, 34, (Preprints of 28th Annual Meeting, the Membrane Society of Japan, 2006, p. 33).
- Hermann, J.M. (1999), "Heterogeneous photocatalysis:fundamental and applications to the removal of various types of aqueous pollutants", Catalysis Today, 53, 115-129. https://doi.org/10.1016/S0920-5861(99)00107-8
- Holmlin, R.E., Chen, X.X., Chapman, T.G., Takayama, S. and Whitessides G.M. (2001), "Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer", Langmuir, 17(9), 2841-2850. https://doi.org/10.1021/la0015258
- Hong, S. and Elimelech M (1997), "Chemical and physical asapects of organic matter (NOM) fouling of nanofiltration membranes", J. Membrane Sci., 132(2), 159-181. https://doi.org/10.1016/S0376-7388(97)00060-4
- http://www.nano.org.uk/news/774, "Novel Tea bag cleans highly polluted water."
- Isogami, H., Miyabayashi, S. and Morita, M. (2011) "Magnetic separation apparatus and waste water treatment apparatus", Patent application No. 20110215041, Publication date: 09/08/2011.
- Jones, D.A., Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W. and Miles, N.J. (2002), "Microwave heatingapplications in environmental engineering-A review", Resources, Conservation Recycling, 34(2), 75-90. https://doi.org/10.1016/S0921-3449(01)00088-X
- Kappe, C.O. (2004), "Controlled microwave heating in modern organic synthesis", Angew. Chem. Int. Ed., 43(46), 6250-6284. https://doi.org/10.1002/anie.200400655
- Karam, J. and Nicell A.J. (1997), "Potential applications of enzymes in waste water treatment", J. Chem. Tech. Biotechnol, 69, 141-153. https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U
- Kasher, R. (2009), "Membrane-based water treatment technologies: recent achievements and new challenges for a chemist", Bulletin Israel Chem. Soc., 24, 10-18.
- Kesting, R. (1971), "Synthetic polymeric membranes, McGrawHill, New-York"
- Khayet, S. M., Payo, G., Carmen, M. and Carmen, A.S. (2011), "Membranes plans nano-estructururades para la destilacion en membranas con contactodirect", W/2011/11/443.]
- Klavarioti, M., Mantzavinos, D. and Kassinos, D, (2009), "Removal of residual pharmaceuticals from aqueous system by advanced oxidation processes", Environ. Intel, 35(2), 402-417. https://doi.org/10.1016/j.envint.2008.07.009
- Kronenberg, K.J. (1985), "Experimental evidence for effects of magnetic fields on moving water", IEEE T. Magn., 21(5), 2059-2061. https://doi.org/10.1109/TMAG.1985.1064019
- Kumar, M., Grzelakowski, M, Zilles, J., Clark, M. and Meier, W. (2007), "Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z", PNAS, 104(52), 20719-20724. https://doi.org/10.1073/pnas.0708762104
- Kwak, S.Y., Jung, S.G. and Kim, S.H. (2001), "Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic membranes composed of aromatic polyamide thin films", Environ. Sci. Technol., 35(21), 4334-4340. https://doi.org/10.1021/es010630g
- Levec, J. and Pintar, A. (2007), "Catalytic wet-air oxidation processes: A review", Catal. Today, 124(3-4), 172-184: https://doi.org/10.1016/j.cattod.2007.03.035
- Lewis, S.R., Datta, S., Gui, M., Huggins, F.E., Daunert, S., Bachas, L. and Bhattacharya, D. (2011), "Reactive nanostructured membranes for water purification", PNAS, 108(21), 8577-8582. https://doi.org/10.1073/pnas.1101144108
- Li, B. and Sirkar, K.K. (2004), "Novel membrane and Device for direct contact membrane distillation based desalination process", Ind. Eng. Chem. Res., 43(17), 5300-5309. https://doi.org/10.1021/ie030871s
- Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, V., Li, D. and Alvarez P.J.J. (2008), "Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications", Water Res., 42(18), 4591-4602. https://doi.org/10.1016/j.watres.2008.08.015
- Lo, S.L., Wang, Y.L. and Hu, C.Y. (2007), "High turbidity reduction during the stormy period by applied magnetic field", J. Environ. Eng. Manag., 17(5), 365-370.
- Loeb, S, and Sourirajan, S. (1964), "Highflow porous membranes for separating water from saline solutions", US 3,133,132.
- Lonsdale, H.K. (1972), "Theory and Practice of reverse osmosis ultrafiltration," In Industrial Processing with Membranes. eds. Lacey RE and Loeb, S, Wiley-Interscience, New York, p 123.
- Mavronikola, C., Demetriou, M., Hapeshi, E., Partassides, D., Michael, C. Mantzavinos, D, and Kassinos, D. (2009), "Mineralisation of the anttbiotic amoxicillin in pyre and surface waters by artificial UVA-and sunlightinduced Fenton oxidation", J. Chem. Technol. Biotechnol., 84, 1211-1217. https://doi.org/10.1002/jctb.2159
- Mitsuhashi, K., Yoshizaki, R., Okada, H., Ohara, T. and Wada, H. (2003), "Purification of endocrine disrupterpolluted water using high temperature superconducting HGMS", Physical Separation Sci. Eng., 12(4), 205-213. https://doi.org/10.1080/14786470310001649333
- Mosqueda-Jimenez, D.B., Narbaitz, R.N. and Matsuura, T. (2004), "Impact of membrane surface modification on the treatment of surface water", J. Environ. Eng., 130(12), 1450-1459. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:12(1450)
- Mulder M. (1992), "Basic Principles of Membrane Technology", second ed. Kluwer Academic Publishers, The Netherlands.
- Naddeo, V., Belgiorno, V., Kassinos, D., Mantzavinos, D. and Meric, S. (2010), "Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters", Ultrasonics Sonochemistry, 17(1), 79-185.
- Nicell, J.A. (2003), "Enzymatic treatment of waters and wastes", Environmental Science and Pollution Control, series 26(Chemical Degradation for Wastes and Pollutants), 26, 423-475.
- Oder, R.R. (2005), "Emulsion breaking with magnetic fields", American Filtration Society, 18th Annual Conference, Atlanta, GA, April 10-13, 2005.
- Ollis, D.F. (2000), "Photocatalytic purification and remediation of contaminated air and water", C R Acad Sci Paris, Serie IIc/Chemistry, 3, 405-411.
- Oturan, M.A., Peiroten, J., Chartrin, P. and Acher, A.J. (2000), "Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method", Environ. Sci. Technol., 34(16), 3474-3479. https://doi.org/10.1021/es990901b
- Peng, W. and Escobar, I.C. (2005), "Evaluation of factors influencing membrane performance", Environ. Progress, 24(4), 392-399. https://doi.org/10.1002/ep.10109
- Pikaev, A. (2001), "Mechanism of the radiation purification of polluted water and waste water", High Energy Chemistry, 35(5), 313-318. https://doi.org/10.1023/A:1011926905064
- Qtaishat M.R. (2008), "Design of Novel Membranes for Desalination by Direct Contact Membrane Distillation", Ph.D. Department of Chemical and Biological Engineering, University of Ottawa.
- Rad, S.A.M., Mirbagheri, S.A. and Mohammadi, T. (2009), "Using reverse osmosis membrane for chromium removal from aqueous solution". World Academy of Sciences and Technology, 57, 348-352.
- Rassaei, L., Sillanpaa, M., Bonne, M. and Marken, F. (2007), "Carbon nanofiber-polystyrene composite electrodes for electroanalytical processes", Electroanalysis, 19(14), 1461-1466. https://doi.org/10.1002/elan.200703887
- Ray, A.K. and Beenackers, A.C.M. (1998), "Development of a new photocatalytic reactor for water purification", Catalysis Today, 40(1), 73-83. https://doi.org/10.1016/S0920-5861(97)00123-5
- Redondo, J., Busch, M. and De Witte, J.P. (2003), "Boron removal from seawater using FILMTECTM high rejection SWRO membranes", Desalination, 156(1-3), 229-238. https://doi.org/10.1016/S0011-9164(03)00345-X
- Reid. C.E. and Breton. E. (1959), "Water and ion flow across cellulosic membranes", J. Appl. Polym. Sci., 1(2), 133-143. https://doi.org/10.1002/app.1959.070010202
- Riley. R.I., Gardner, J.O. and Merten, U. (1964), "Cellulose acetate membranes: Electron Microscopy of structure", Science, 143(3608), 801-803. https://doi.org/10.1126/science.143.3608.801
- Riley, R.L., Lonsdale, H.K. and Lyons, C.R. (1971), "Composite membrane for sea water desalination by reverse osmosis", J. Appl. Polymer Sci., 15(2), 1267-1276. https://doi.org/10.1002/app.1971.070150520
- Ritchie. S.M.C. (2009), "Enhanced dechlorination of trichloroethylene by membrane supported and Biometallic Nanoparticles", In 'Nanotechnology applications for clean water. Eds. N. Savage, M. Diallo, J. Dunecan, A. Street, R. Suntich, William Andrew Inc., 13 Eaton Ave., Norwich, NY, 13815, 2009, pp 293.
- Roman, H.J., Burgess, J.E. and Pletschke, B.I. (2006), "Enzyme treatment to decrease solids and improve digestion of primary sewage sludge," Afr. J. Biotech, 5(10), 963-967.
-
Ryu, I. and Choi. W. (2008), "Substrate-specific photocatlytic activitie of
$TiO_{2}$ and multicavity test for water treatment application," Environ. Sci. Technology, 42, 294-300. https://doi.org/10.1021/es071470x - Sang, Y., Li, F., Gu, Q., Liang, C. and Chen, J. (2008), "Heavy metal-contaminated ground water treatment by a novel nanofiber membrane", Desalination, 223(1-3), 349-360. https://doi.org/10.1016/j.desal.2007.01.208
- Savage, N. and Diallo, M.S. (2005), "Nanmaterials and water purification: opportunities and challenges", J. Nanoparticles Res., 7(4-5), 331-342. https://doi.org/10.1007/s11051-005-7523-5
- Sesay, M.L., zcengis, G. and Dilek, S.F. (2006), "Enzymatic extraction of activated sludgeextracellular polymers and implications on bioflocculation", Water Res., 40(7), 1359-1366. https://doi.org/10.1016/j.watres.2006.01.045
- Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M. (2008), "Science and technology for water purification in the coming decades", Nature, 452, 301-310. https://doi.org/10.1038/nature06599
- Shi, Q., Su, Y., Zhu, S., Li, C., Zhao, Y. and Jiang Z.A. (2007), "Facile method for synthesis of pegylated polyethersulfone and itsapplication in fabrication of antifouling ultrafiltration membrane", J. Membrane Sci., 303(1-2), 204-212. https://doi.org/10.1016/j.memsci.2007.07.009
- Slaughter, S. (2010), "Improving the sustainability of water treatment systems: Opportunities for innovation", Solutions, 1(3), 42-49.
- Strathmann, H. (2001), "Membrane separation process: current relevance and future opportunities", AIChE J., 47(5), 1077-1087. https://doi.org/10.1002/aic.690470514
- Susanto, H., Balakrishnan, M. and Ulbricht, M. (2007a), "Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes", J. Membrane Sci., 288(1-2), 157-167. https://doi.org/10.1016/j.memsci.2006.11.013
- Susanto, H. and Ulbricht, M. (2006), "Performance of surface modified polyethersulfone membranes for ultrafiltration of aquatic humic substances", Desalination, 199, 384-386. https://doi.org/10.1016/j.desal.2006.03.087
- Susanto, H. and Ulbricht, M. (2007b), "Photografted thin polymer hydrogel layers on PES ultrafiltration membranes: characterization, stability, and influence on separation performance", Langmuir, 23(14), 7818-7830. https://doi.org/10.1021/la700579x
- Tarabara, V.V. (2009), "Multifunctional nanomaterial-enabled membranes for water treatment", In 'Nanotechnology applications for clean water. Eds. N. Savage, M. Diallo, J. Dunecan, A. Street, R. Suntich, William Andrew Inc., 13 Eaton Ave., Norwich, NY, 13815, 2009, pp 59.
- Theron, J., Walker, A.J. and Cloete, T. (2010), "Nanotechnology and water treatment: applications and emerging opportunities", In 'Nanotechnology in water treatment Applications, Edts. T.E. Cloete, M. Kwaadsteniet, M. Botes, J.M, Lopez-Romero, Caister Academic Press, 2010.
- Ullrich, M. (editor), Bacterial polysaccharides: "Current Innovationand Future Trends", Caister Academic Press. ISBN 978-1-904455-45-5. 2009.
- Vilhunen, S. and Sillanpaa, M. (2010), "Recent developments in photochemical and chemical AOPs in watertreatment: a mini review", Rev. Environ. Sci. Biotechnol., 9(4), 323-330. https://doi.org/10.1007/s11157-010-9216-5
- Wagner, M. and Nicell, J.A. (2003), "Impact of the presence of solids on peroxidase-catalysed treatment of aqueous phenol", J. Chem. Tech. Biotechnol., 78, 694-702. https://doi.org/10.1002/jctb.754
- Wang, Y.Q., Su, Y.L., Sun, Q., Ma, X.L. and Jiang, Z.Y. (2006), "Generation of anti-biofoulingultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone", J. Membrane Sci., 286, 228-236. https://doi.org/10.1016/j.memsci.2006.09.040
- Wawrzynczyk, J., Recktenwald, M., Norrlow, O. and Dey, E.S. (2008), "The function of cat-ion binding agents in the enzymatic treatment of municipal sludge", Water Res., 42(6-7), 1555-1562. https://doi.org/10.1016/j.watres.2007.11.004
- Wenten, I.G. (2002), "Recent developmentin membrane science and its industrial application", Songklanakarin J. Sci. Technol. (Membrane Sci. Tech.)., 24, 1009-1024.
- World Health Organization (2008). Safer Water, Better Health: Costs, benefits, and sustainability of interventions to protect and promote health.
- Xia, L.X., Lu, S. and Cao, G.Y. (2003), "Demulsification of emulsions exploited by enhanced oil recovery system", Separation Sci. Technology, 38(16), 4079-4094. https://doi.org/10.1081/SS-120024720
- Yamaguchi, T., Suzuki, T., Kai, T. and Nakao, S.I. (2001), "Hollow-fiber-type pore-filling membranes made by plasma-graft polymerization for the removal of chlorinated organics from water", J. Membrane Sci., 194(2), 217-228. https://doi.org/10.1016/S0376-7388(01)00545-2
- Yan, S., Miyanaga, K., Xing, X-H. and Tanji, Y. (2008), "Succession of bacterial community and enzymatic activities of activated sludge by heat-treatment for reduction of excess sludge", Biotechem. Eng. J., 39(3), 598-603. https://doi.org/10.1016/j.bej.2007.12.002
- Yang, S., Wang, P., Yang, X., Wei, G., Zhang, W. and Shan, L. (2009), "A novel advanced oxidation process to degrade organic pollutants in waste water: Microwave-activated persulfate oxidation", J. Environ Sci., 21(9), 1175-1180. https://doi.org/10.1016/S1001-0742(08)62399-2
- Yoon, K., Kim, K., Wang, F., Fang, D., Hsiao, B.S. and Chu, B. (2006), "High flux ultrafiltration membranes based on electrospun nanofibers PAN scaffolds and chitosan coating", Polymer, 47(7), 2434-2441. https://doi.org/10.1016/j.polymer.2006.01.042
- Yoshida, W and Cohen, Y. (2004), "Removal of methyl tert-butyl ether from water by pervaporation using ceramic-supported polymer membranes", J. Membrane Sci., 229(1-2), 27-32. https://doi.org/10.1016/j.memsci.2003.09.021
- Yu, G.H., He, P.J., Shao, L.M. and Zhu, Y.S. (2008), "Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment", Water Res., 42(8-9), 1925-1934. https://doi.org/10.1016/j.watres.2007.11.022
-
Zhang, J., Fu, D., Xu, Y. and Liu, C, (2010), "Optimization of parameters on photo-catalytic degradation of chloramphenicol using
$TiO_{2}$ as photo-catalyst by response surface methodology," J. Environ. Sci., 22(8), 1281-1289. https://doi.org/10.1016/S1001-0742(09)60251-5 -
Zhang, L., Kanki, T., Sano, N. and Toyoda, A. (2003), "Development of
$TiO_{2}$ photocatalyst reaction for water purification", Sep. Pur. Tech., 31(1), 105-110. https://doi.org/10.1016/S1383-5866(02)00157-0 - Zhang, X., Du, A.J., Lee, P., Sun, D.D. and Leckie, J.O. (2008a), "Grafted multifunctional titanium dioxide nanotube membrane: separation and photodegradation of aquatic pollutant", Appl. Catal. B: Environ, 84(1-2), 262-267. https://doi.org/10.1016/j.apcatb.2008.04.009
-
Zhang, X., Du. A.J., Lee, P., Sun, D.D. and Leckie, J.O. (2008), "
$TiO_{2}$ nanowire membrane for concurrent filtration and photocalytic oxidation of humic acid in water", J. Membrane Sci., 313(1-2), 44-51. https://doi.org/10.1016/j.memsci.2007.12.045
피인용 문헌
- Preparation and characterization of a novel hydrophilic poly(vinylidene fluoride) filtration membrane incorporated with Zn–Al layered double hydroxides vol.39, 2016, https://doi.org/10.1016/j.jiec.2016.05.006
- A thermothickening polymer as a novel flocculant for oily wastewater treatment pp.1520-5754, 2020, https://doi.org/10.1080/01496395.2018.1563161
- Dissolved organic matter characteristics and bacteriological changes during phosphorus removal using ladle furnace slag vol.9, pp.3, 2012, https://doi.org/10.12989/mwt.2018.9.3.181
- Thermo-responsive antifouling study of commercial PolyCera® membranes for POME treatment vol.11, pp.2, 2020, https://doi.org/10.12989/mwt.2020.11.2.097
- A column study of effect of filter media on the performance of sand filter vol.11, pp.4, 2012, https://doi.org/10.12989/mwt.2020.11.4.247
- Reuse potential of spent RO membrane for NF and UF process vol.11, pp.5, 2012, https://doi.org/10.12989/mwt.2020.11.5.323
- Optimized Pretreatment of Non-Thermal Plasma for Advanced Sewage Oxidation vol.17, pp.20, 2012, https://doi.org/10.3390/ijerph17207694
- Performance prediction of flat sheet commercial nanofiltration membrane using Donnan-Steric Pore Model vol.12, pp.2, 2012, https://doi.org/10.12989/mwt.2021.12.2.059