참고문헌
- Astley, R., Stol, K. and Harrington, J.J. (1998), "Modelling the elastic properties of softwood, part ii: The cellular microstructure", Holz Roh Werkst., 56(1), 43-50. https://doi.org/10.1007/s001070050262
- Bader, T.K., Hofstetter, K. and Eberhardsteiner, J. (2011), "The poroelastic role of water in cell walls of the hierarchical composite "softwood", Acta Mech., 217(1-2), 75-100. https://doi.org/10.1007/s00707-010-0368-8
- Bengtsson, C. (2001), "Variation of moisture induced movements in norway spruce (picea abies)", Ann. Forest Sci., 58(5), 569-581.
- Bergander, A. (2001), Local variability in chemical and physical properties of spruce wood fibers, Doctoral thesis, Royal Institute of Technology.
- Biot, M.A. (1955), "Theory of elasticity and consolidation for a porous anisotropic solid", J. Appl. Phys., 26(2), 182-185. https://doi.org/10.1063/1.1721956
- Bohm, H. (2004), A short introduction to continuum micromechanics, Springer Verlag, Wien, New York.
- Boutelje, J.B. (1962), "The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity", Holzforschung, 16(2), 33-46. https://doi.org/10.1515/hfsg.1962.16.2.33
- Burgert, I. (2000), Die mechanische bedeutung der holzstrahlen im lebenden baum, Doctoral thesis, University Hamburg.
- Burgert, I. (2003), "Uber die mechanische bedeutung der holzstrahlen", Schweiz. Z. Forstwes., 154(12), 498-503. https://doi.org/10.3188/szf.2003.0498
- Derome, D., Griffa, M., Koebel, M. and Carmeliet, J. (2011), "Hysteretic swelling of wood at cellular scale probed by phase-contrast x-ray tomography", J. Struct. Biol., 173(1), 180-190. https://doi.org/10.1016/j.jsb.2010.08.011
- Dormieux, L., Molinari, A. and Kondo, D. (2002), "Micromechanical approach to the behavior of poroelastic material", J. Mech. Phy. Solids, 50(10), 2203-2231. https://doi.org/10.1016/S0022-5096(02)00008-X
- Eitelberger, J. and Hofstetter, K. (2011), "Prediction of transport properties of wood below the fiber saturation point -a multiscale homogenization approach and its experimental validation, part I: Thermal conductivity", Compos. Sci. Technol., 71(2), 134-144. https://doi.org/10.1016/j.compscitech.2010.11.007
- El Omri, A., Fennan, A., Sidoro., F. and Hihi, A. (2000), "Elastic-plastic homogenization for layered composites", Eur. J. Mech. A-Solid., 19(4), 585-601. https://doi.org/10.1016/S0997-7538(00)00182-0
- Elwood, E. (1954), Properties of american beech in tension and compression perpendicular to the grain and their relation to drying, Yale Univ. School For., Bull. No. 61, Yale Univ., New Haven, CT.
- Farruggia, F. and Perré, P. (2000), "Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce", Wood Sci. Technol., 34(2), 65-82. https://doi.org/10.1007/s002260000034
- Fengel, D. and Wegener, G. (1983), WOOD Chemistry, Ultrastructure, Reactions, Verlag Kessel, Munich.
- Fratzl, P. and Weinkamer, R. (2007), "Nature's hierarchical material", Prog. Mater. Sci., 52(8), 1263-1334. https://doi.org/10.1016/j.pmatsci.2007.06.001
- Gloimüller, S. (2012), Multiscale modeling and experimental investigation of the hygroexpansion behavior of softwood, Doctoral thesis, Vienna University of Technology, Faculty of Civil Engineering. In English.
- Greenhill, W. (1936), "Strength tests perpendicular to the grain of timber at various temperautres and moisture contents", J. Counc. Sci. Ind. Res., 9(4), 265-278.
- Hellmich, C. and Ulm, F.J. (2005), "Drained and undrained poroelastic properties of healthy and pathological bone: A poro-micromechanical investigation", Transport Porous Med., 58(3), 243-268. https://doi.org/10.1007/s11242-004-6298-y
- Hofstetter, K., Hellmich, C. and Eberhardsteiner, J. (2006), "Micromechanical modeling of solid-type and platetype deformation patterns within softwood materials. A review and an improved approach", Holzforschung, 61(4), 343-351.
- Kadita, S., Yamada, T., Suzuki, M. and K., K. (1961), "Studies on the rheological properties of wood. i. effect of moisture content on the dynamic young's modulus of wood. ii. effect of heat-treating condition on the hygroscopicity and dynamic young's modulus of wood", J. Jap. Wood Res. Soc., 7(1), 29-38.
- Kifetew, G. (1997), "Application of the earlywood-latewood interaction theory to the shrinkage anisotropy of scots pine", International Conference of COST Action E8, Mechanical Performance of Wood and Wood Products, Theme: Wood-water relations, Royal Institute of Technology Stockholm, Sweden.
- Kifetew, G., Lindberg, H. and Wiklung, M. (1997), "Tangential and radial deformation field measurements on wood during drying", Wood Sci. Technol., 31(1), 35-44. https://doi.org/10.1007/BF00705698
- Kollmann, F. (1951), Technologie des holzes und der holzwerkstoffe, Verlag Springer, Berlin, Heidelberg, New York.
- Kufner, M. (1978), "Modulus of elasticity and tensile strength of wood species with different density and their dependence on moisture content", Holz Roh. Werkst., 36(11), 435-439. https://doi.org/10.1007/BF02607685
- Lindstrom, H. (1996), "Fiber length, tracheid diameter, and latewood percentage in norway spruce: Development from pith outwards", Wood Fiber Sci., 29(1), 21-34.
- Marklund, E. and Varna, J. (2009), "Modeling the hygroexpansion of aligned wood fiber composites", Compos. Sci. Technol., 69(7-8), 1108-1114. https://doi.org/10.1016/j.compscitech.2009.02.006
- Moden, C.S. and Berglund, L.A. (2008a), "Elastic deformation mechanisms of softwoods in radial tension -cell wall bending or stretching?", Holzforschung, 62(5), 562-568.
- Moden, C.S. and Berglund, L.A. (2008b), "A two-phase annual ring model of transverse anisotropy in softwoods", Compos. Sci. Technol., 68(14), 3020-3026. https://doi.org/10.1016/j.compscitech.2008.06.022
- Nakano, T. (2008), "Analysis of cell wall swelling on the basis of a cylindrical model", Holzforschung, 62(3), 352-356.
- Neagu, R. and Gamstedt, E. (2007), "Modelling of effects of ultrastructural morphology on the hygroelastic properties of wood fibres", J. Mater. Sci., 42(24), 10254-10274. https://doi.org/10.1007/s10853-006-1199-9
- Neuhaus, T.H. (1981), Elastizitatszahlen von fichtenholz in abhangigkeit von der holzfeuchte, Technischwissenschaftliche Mitteilungen 81-8, Insitut fur Konstruktiven Ingenieurbau, Ruhr-Universitat Bochum.
- Noack, D., Schwab, E. and Bartz, A. (1973), "Characteristics for a judgment of the sorption and swelling behavior of wood", Wood Sci. Technol., 7(3), 218-236. https://doi.org/10.1007/BF00355552
- Olsson, T., Megnis, M., Varna, J. and Lindberg, H. (2001), "Study of the transverse liquid .ow paths in pine and spruce using scanning electron microscopy", J. Wood Sci., 47(4), 282-288. https://doi.org/10.1007/BF00766714
- Pang, S. (2002), "Predicting anisotropic shrinkage of softwood part 1: Theories", Wood Sci. Technol., 36(1), 75-91. https://doi.org/10.1007/s00226-001-0122-4
- Pang, S. and Herritsch, A. (2005), "Physical properties of earlywood and latewood of pinus radiata d. don: Anisotropic shrinkage, equilibrium moisture content and .bre saturation point", Holzforschung, 59, 654-661.
- Perre, P. and Huber, F. (2007), "Measurement of free shrinkage at the tissue level using an optical microscope with an immersion objective: results obtained for douglas fir (pseudotsuga menziesii) and spruce (picea abies)", Ann. Forest Sci., 64(3), 255-265. https://doi.org/10.1051/forest:2007003
- Persson, K. (2000), Micromechanical modelling of wood and fibre properties, Doctoral thesis, Lund University. In English.
- Qing, H. and Mishnaevsky Jr., L. (2008), 3d hierarchical computational model of wood as a cellular material with .bril reinforced, heterogeneous multiple layers, Mechanics of Materials.
- Qing, H. and Mishnaevsky Jr., L. (2009), Moisture-related mechanical properties of softwood: 3d micromechanical modeling, Computational Materials Science.
-
Schneider, A. (1971), "Investigations on the influence of heat treatments with a range of temperatures from
$200^{\circ}$ to$200^{\circ}C$ on the modulus of elasticity, maximum crushing strength, and impact work of pine sapwood and beechwood", Holz Roh. Werkst, 29(11), 431-440. https://doi.org/10.1007/BF02625823 - Siimes, F. (1967), "The effect of specific gravity, moisture content, temperature and heating time on the tension and compression strength and elastic properties perpendicular to the grain of .nnish pine, spruce and birch wood and the signi.cance of those factors on the checking of timber at kiln drying", State Inst. Tech. Res., Helsinki, Finland, 84.
- Smith, S.A. and Langrish, T.A.G. (2008), "Multicomponent solid modeling of continuous and intermittent drying of pinus radiata sapwood below the fiber saturation point", Dry. Technol., 26(7), 844-854. https://doi.org/10.1080/07373930802136012
- Sulzberger, P. (1953), The effect of temperature on the strength of wood, plywood and glue joints, Aeronaut. Res. Consultative Com. Rep. ACA-46, Melbourne, Australia.
- Tarmian, A. and Azadfallah, M. (2009), "Variation of cell features and chemical composition in spruce consisting of opposite, normal, and compression wood", BioResource., 4(1), 194-204.
- Ulm, F.J., Delafargue, A. and Constantinides, G. (2004), "Experimental microporomechanics", Lecture notes prepared for the summer school Applied Micromechanics of Porous Materials, Coordinated by L. Dormieux and F.-J. Ulm, International Centre for Mechanical Sciences (CISM), Udine, Italy.
- USDA (1999), Wood handbook, U.S. Department of Agriculture, United States of America.
- Wagenführ, R. (2007), Holzatlas, Fachbuchverlag Leipzig im Carl Hanser Verlag, Leipzig, 6. edition.
- Watanabe, U., Fujita, M. and Norimoto, M. (2002), "Transverse young's moduli and cell shapes in coniferous early wood", Holzforschung, 56(1), 1-6. https://doi.org/10.1515/HF.2002.001
- Wilson, R. (1932), Strength-moisture relations of wood, USDA Tech. Bull. No. 282 U.S. Dep. Agric., Washington, D.C.
- Yamamoto, H. (1999), "A model of the anisotropic swelling and shrinking process of wood. Part 1: Generalization of Barber's wood fiber model", Wood Sci. Technol., 33(4), 311-325. https://doi.org/10.1007/s002260050118
- Zaoui, A. (2002), "Continuum micromechanics: Survey", J. Eng. Mech., 128(8), 808-816. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(808)
피인용 문헌
- Strength predictions of clear wood at multiple scales using numerical limit analysis approaches vol.196, 2018, https://doi.org/10.1016/j.compstruc.2017.11.005
- Structure–function relationships in hardwood – Insight from micromechanical modelling vol.345, 2014, https://doi.org/10.1016/j.jtbi.2013.12.013
- Relating relative humidity fluctuations to damage in oak panel paintings by a simple experiment pp.2047-0584, 2018, https://doi.org/10.1080/00393630.2018.1481351