References
- Ashida, F. and Tauchert, T.R. (2001), "A general plane-stress solution in cylindrical coordinates for a piezoelectric plate", Int. J. Solids Struct., 38(28-29), 4969-4985. https://doi.org/10.1016/S0020-7683(00)00321-8
- Ashida, F. (2003), "Thermally-induced wave propagation in piezoelectric plate", Acta. Mech., 161(1-2), 1-16. https://doi.org/10.1007/s00707-002-0986-x
- Benhard, K., Howard, A.L. and Waldemar, V. (1999), "Buckling eigen values for a clamped plate embedded in an elastic medium and related questions", SIAM J. Math. Anal., 24(2), 327-340.
- Chandrasekharaiah, D.S. (1986), "Thermo elasticity with second sound - a review", Appl. Mech. Rev., 39(3), 355-376. https://doi.org/10.1115/1.3143705
- Dhaliwal, R.S. and Sherief, H.H. (1980), "Generalized thermo elasticity for anisotropic media", Appl. Math. Model, 8(1), 1-8.
- Erbay, E.S. and Suhubi, E.S. (1986), "Longitudinal wave propagation thermo elastic cylinder", J. Thermal Stresses, 9, 279-295. https://doi.org/10.1080/01495738608961904
- Gaikwad, M.K. and Desmukh, K.C. (2005), "Thermal deflection of an inverse thermo elastic problem in a thin isotropic circular plate", Appl. Math. Model, 29(9), 797-804. https://doi.org/10.1016/j.apm.2004.10.012
- Green, A.E. and Lindsay K.A. (1972), "Thermo elasticity", J. Elasticity, 2(1), 1-7. https://doi.org/10.1007/BF00045689
- Green, A.E. and Laws, N. (1972), "On the entropy production inequality", Arch. Ration. Mech. An., 45(1), 47-53.
- Heyliger, P.R. and Ramirez, G. (2000), "Free vibration of laminated circular piezoelectric plates and disc", J. Sound Vib., 229(4), 935-956. https://doi.org/10.1006/jsvi.1999.2520
- Kamal, K. and Duruvasula, S. (1983), "Bending of circular plate on elastic foundation", J. Eng. Mech.-ASCE, 109(5), 1293-1298. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1293)
- Lessia, A.W. (1981), "Plate vibration research: complicating effects", Shock. Vib., 13(10), 19-36.
- Lord, H.W. and Shulman, V. (1967), "A generalized dynamical theory of thermo elasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Paliwal, D.N., Pandey, R.K. and Nath, T. (1996) "Free vibrations of circular cylindrical shell on winkler and pasternak foundations", Int. J. Pres. Ves. Pip., 69(1), 79-89. https://doi.org/10.1016/0308-0161(95)00010-0
- Ponnusamy, P. (2007), "Wave propagations in a generalized thermo elastic solid cylinder of arbitrary cross section", Int. J. Solids Struct., 44(16), 5336-5348. https://doi.org/10.1016/j.ijsolstr.2007.01.003
- Ponnusamy, P. and Selvamani, R. (2011), "Wave propagation in a homogeneous isotropic thermo elastic cylindrical panel embedded on elastic medium", Int. J. Appl. Math. Mech., 7(19), 83-96.
- Selvadurai, A.P.S. (1979), "Elastic analysis of soil foundation interaction", New York, Elsevier Scientific Publishing Co.
- Sharma, J.N. and Pathania, V. (2005), "Generalized thermo elastic wave propagation in circumferential direction of transversely isotropic cylindrical curved plate", J. Sound Vib., 281(3-5), 1117-1131. https://doi.org/10.1016/j.jsv.2004.02.010
- Sharma, J.N. and Kaur, D. (2010), "Modeling of circumferential waves in cylindrical thermo elastic plates with voids", Appl. Math. Model, 34(2), 254-265. https://doi.org/10.1016/j.apm.2009.04.003
- Suhubi, E.S. (1975), "Thermo elastic solids in Eringen, AC (ed), continuum physics", Vol. II, Chapter 2. New York, Academic.
- Tso, Y.K. and Hansen, C.H. (1995), "Wave propagation through cylinder/plate junctions", J. Sound Vib. 186(3) 447-461. https://doi.org/10.1006/jsvi.1995.0460
- Wang, C.M. (2005), "Fundamental frequencies of a circular plate supported by a partial elastic foundation", J. Sound Vib., 285(4-5), 1203-1209. https://doi.org/10.1016/j.jsv.2004.11.018
Cited by
- Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1201
- Buckling and vibration of laminated composite circular plate on winkler-type foundation vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.001
- Exact solution for transverse bending analysis of embedded laminated Mindlin plate vol.49, pp.5, 2014, https://doi.org/10.12989/sem.2014.49.5.661
- Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.287
- Wave propagation in a generalized thermo elastic circular plate immersed in fluid vol.46, pp.6, 2013, https://doi.org/10.12989/sem.2013.46.6.827
- Wave propagation in a generalized thermoelastic plate using eigenvalue approach vol.39, pp.11, 2016, https://doi.org/10.1080/01495739.2016.1218229
- Nonlinear bending behavior of orthotropic Mindlin plate resting on orthotropic Pasternak foundation using GDQM vol.78, pp.3, 2014, https://doi.org/10.1007/s11071-014-1545-4
- Dispersion of elastic waves in a layer interacting with a Winkler foundation vol.144, pp.5, 2018, https://doi.org/10.1121/1.5079640
- Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads vol.44, pp.2, 2012, https://doi.org/10.12989/sem.2012.44.2.139
- Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method vol.45, pp.2, 2012, https://doi.org/10.12989/sem.2013.45.2.169
- Theoretical analysis of transient wave propagation in the band gap of phononic system vol.6, pp.1, 2013, https://doi.org/10.12989/imm.2013.6.1.015
- Study of viscoelastic model for harmonic waves in non-homogeneous viscoelastic filaments vol.6, pp.1, 2012, https://doi.org/10.12989/imm.2013.6.1.031