DOI QR코드

DOI QR Code

Basic Statistics in Quantile Regression

  • Kim, Jae-Wan (Department of Statistics, Pusan National University) ;
  • Kim, Choong-Rak (Department of Statistics, Pusan National University)
  • Received : 2012.01.02
  • Accepted : 2012.04.05
  • Published : 2012.04.30

Abstract

In this paper we study some basic statistics in quantile regression. In particular, we investigate the residual, goodness-of-fit statistic and the effect of one or few observations on estimates of regression coefficients. In addition, we compare the proposed goodness-of-fit statistic with the statistic considered by Koenker and Machado (1999). An illustrative example based on real data sets is given to see the numerical performance of the proposed basic statistics.

Keywords

References

  1. Cole, T. J. and Green, P. J. (1992). Smoothing reference centile curves: The LMS method and penalized likelihood, Statistics in Medicine, 11, 1305-1319. https://doi.org/10.1002/sim.4780111005
  2. Heagerty, P. J. and Pepe, M. S. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children, Journal of the Royal Statistical Society, 48, 533-551. https://doi.org/10.1111/1467-9876.00170
  3. Hendricks, W. and Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity, Journal of the American Statistical Association, 87, 58-68. https://doi.org/10.1080/01621459.1992.10475175
  4. Huang, Y. (2010). Quantile calculus and censored regression, Annals of Statistics, 38, 1607-1637. https://doi.org/10.1214/09-AOS771
  5. Koenker, R. (2005). Quantile Regression, Cambrige, New York.
  6. Koenker, R. (2008). Censored quantile regression redux, Journal of Statistical Software, 27, 1-25.
  7. Koenker, R. and Bassett, G. (1978). Asymptotic theory of least absolute error regression, Journal of the American Statistical Association, 73, 618-622. https://doi.org/10.1080/01621459.1978.10480065
  8. Koenker, R. and Bassett, G. (1982). Regression quantiles, Econometrica, 46, 33-50.
  9. Koenker, R. and Hallock, K. F. (2001). Quantile regression, The Journal of Economic Perspectives, 15, 143-156. https://doi.org/10.1257/jep.15.4.143
  10. Koenker, R. and Machado, A. F. (1999). Goodness of fit and related inference processes for quantile regression, Journal of the American Statistical Association, 94, 1296-1310. https://doi.org/10.1080/01621459.1999.10473882
  11. Li, Y., Liu, Y. and Zhu, J. (2007). Quantile regression in reproducing kernel hilbert spaces, Journal of the American Statistical Association, 102, 255-268. https://doi.org/10.1198/016214506000000979
  12. Peng, L. and Huang, Y. (2008). Survival analysis with quantile regression models, Journal of the American Statistical Association, 103, 637-649. https://doi.org/10.1198/016214508000000355
  13. Portnoy, S. (2003). Censored regression quantiles, Journal of the American Statistical Association, 98, 1001-1012. https://doi.org/10.1198/016214503000000954
  14. Powell, J. L. (1984). Least absolute deviations estimation for the censored regression model, Journal of Econometrics, 25, 303-325. https://doi.org/10.1016/0304-4076(84)90004-6
  15. Powell, J. L. (1986). Censored regression quantiles, Journal of Econometrics, 32, 143-155. https://doi.org/10.1016/0304-4076(86)90016-3
  16. Shim, J. and Hwang, C. (2009). Support vector censored quantile regression under random censoring, Computational Statistics and Data Analysis, 53, 912-919. https://doi.org/10.1016/j.csda.2008.10.037
  17. Wang, H. J. and Wang, L. (2009). Locally weighted censored quantile regression, Journal of the American Statistical Association, 104, 1117-1128. https://doi.org/10.1198/jasa.2009.tm08230
  18. Yin, G., Zeng, D. and Li, H. (2008). Power-transformed linear quantile regression with censored data, Journal of the American Statistical Association, 103, 1214-1224. https://doi.org/10.1198/016214508000000490
  19. Yu, K., Lu, Z. and Stander, J. (2003). Quantile regression: Applications and current research areas, Journal of the Royal Statistical Society, 52, 331-350.