References
- Cole, T. J. and Green, P. J. (1992). Smoothing reference centile curves: The LMS method and penalized likelihood, Statistics in Medicine, 11, 1305-1319. https://doi.org/10.1002/sim.4780111005
- Heagerty, P. J. and Pepe, M. S. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children, Journal of the Royal Statistical Society, 48, 533-551. https://doi.org/10.1111/1467-9876.00170
- Hendricks, W. and Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity, Journal of the American Statistical Association, 87, 58-68. https://doi.org/10.1080/01621459.1992.10475175
- Huang, Y. (2010). Quantile calculus and censored regression, Annals of Statistics, 38, 1607-1637. https://doi.org/10.1214/09-AOS771
- Koenker, R. (2005). Quantile Regression, Cambrige, New York.
- Koenker, R. (2008). Censored quantile regression redux, Journal of Statistical Software, 27, 1-25.
- Koenker, R. and Bassett, G. (1978). Asymptotic theory of least absolute error regression, Journal of the American Statistical Association, 73, 618-622. https://doi.org/10.1080/01621459.1978.10480065
- Koenker, R. and Bassett, G. (1982). Regression quantiles, Econometrica, 46, 33-50.
- Koenker, R. and Hallock, K. F. (2001). Quantile regression, The Journal of Economic Perspectives, 15, 143-156. https://doi.org/10.1257/jep.15.4.143
- Koenker, R. and Machado, A. F. (1999). Goodness of fit and related inference processes for quantile regression, Journal of the American Statistical Association, 94, 1296-1310. https://doi.org/10.1080/01621459.1999.10473882
- Li, Y., Liu, Y. and Zhu, J. (2007). Quantile regression in reproducing kernel hilbert spaces, Journal of the American Statistical Association, 102, 255-268. https://doi.org/10.1198/016214506000000979
- Peng, L. and Huang, Y. (2008). Survival analysis with quantile regression models, Journal of the American Statistical Association, 103, 637-649. https://doi.org/10.1198/016214508000000355
- Portnoy, S. (2003). Censored regression quantiles, Journal of the American Statistical Association, 98, 1001-1012. https://doi.org/10.1198/016214503000000954
- Powell, J. L. (1984). Least absolute deviations estimation for the censored regression model, Journal of Econometrics, 25, 303-325. https://doi.org/10.1016/0304-4076(84)90004-6
- Powell, J. L. (1986). Censored regression quantiles, Journal of Econometrics, 32, 143-155. https://doi.org/10.1016/0304-4076(86)90016-3
- Shim, J. and Hwang, C. (2009). Support vector censored quantile regression under random censoring, Computational Statistics and Data Analysis, 53, 912-919. https://doi.org/10.1016/j.csda.2008.10.037
- Wang, H. J. and Wang, L. (2009). Locally weighted censored quantile regression, Journal of the American Statistical Association, 104, 1117-1128. https://doi.org/10.1198/jasa.2009.tm08230
- Yin, G., Zeng, D. and Li, H. (2008). Power-transformed linear quantile regression with censored data, Journal of the American Statistical Association, 103, 1214-1224. https://doi.org/10.1198/016214508000000490
- Yu, K., Lu, Z. and Stander, J. (2003). Quantile regression: Applications and current research areas, Journal of the Royal Statistical Society, 52, 331-350.