References
- W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J., 25(1958), 647-669. https://doi.org/10.1215/S0012-7094-58-02560-2
- G. Calvaruso and R. A. Marinosci, Homogeneous geodesics of non-unimodular Lorentzian Lie groups and naturally reductive Lorentzian spaces in dimension three, Adv. Geom. 8(2008), 473-489. https://doi.org/10.1515/ADVGEOM.2008.030
- L. A Cordero and P. E. Parker, Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Appl., 17(7)(1997), 129-155.
- J. E. D'Atri, Geodesic spheres and symmetries in naturally reductive homogeneous spaces, Michigan Math. J., 22(1975), 71-76. https://doi.org/10.1307/mmj/1029001423
- J. E. D'Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc. 18, 215, 1979.
- B. De Leo and R. A. Marinosci, Special Homogeneous structures on pseudo- Riemannian manifolds, JP Journal of Geometry and Topology, 8(3)(2008), 203 - 228.
- P. M. Gadea and J. A. Oubina, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math., 18(3)(1992), 449- 465.
- P. M. Gadea and J. A. Oubina, Reductive homogeneous pseudo-Riemannian manifolds, Mh. Math., 124(1997), 17-34. https://doi.org/10.1007/BF01320735
- N. Haouari, W. Batat, N. Rahmani and S. Rahmani, Three-dimensional naturally reductive homogeneous Lorentzian manifolds, Mediterranean J. Math., 5(2008), 113- 131. https://doi.org/10.1007/s00009-008-0139-0
- S. Kobayashi and K. Nomizu, Foundations of differential geometry, II, Intersciences Publ., New York, 1969.
- O. Kowalski, Spaces with volume-preserving symmetries and related classes of Riemannian manifolds, Rend. Semin. Mat. Univ. Politec. Torino, Fascicolo Speciale, (1983), 131-158.
- O. Kowalski, Generalized symmetric spaces, Lectures Notes in Math., Springer- Verlag, Berlin, Heidelberg, New York, 1980.
- O. Kowalski and L. Vanhecke, Four-dimensional naturally reductive homogeneous spaces, Rend. Sem. Mat. Torino, Fasc. Speciale, (1985), 223-232.
- J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math., 21(1976), 293-329. https://doi.org/10.1016/S0001-8708(76)80002-3
- K. Nomizu, Invariant affine connection on homogeneous spaces, Amer. J. Math., 76(1954), 33-65. https://doi.org/10.2307/2372398
- B. O'Neill, Semi-Riemannian Geometry, New York Academic Press, 1983.
- F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Math. Soc. Lect. Notes 83, Cambridge Univ. Press, 1983.
- F. Tricerri and L. Vanhecke, Geodesic spheres and naturally reductive homogeneous spaces, Riv. Mat. Univ. Parma, 1985.
- H. Wu, On the de Rham decomposition theorem, Illinois J. Math., 8(1964), 291-311.
- H. Wu, Decomposition of Riemannian manifolds, Bull. Amer. Math. Soc., 70(1964), 610-617. https://doi.org/10.1090/S0002-9904-1964-11212-X
- H. Wu, Holonomy groups of indefinite metrics, Pacific J. Math., 20(1967), 351-392. https://doi.org/10.2140/pjm.1967.20.351
Cited by
- Four-dimensional naturally reductive pseudo-Riemannian spaces vol.41, 2015, https://doi.org/10.1016/j.difgeo.2015.04.004