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Abstract. Our attention is turned to four-dimensional pseudo-Riemannian naturally re-

ductive homogeneous spaces. In particular, our study leads to a complete classification of

them.

1. Introduction

Naturally reductive homogeneous Riemannian spaces are the simplest kind of
homogeneous spaces. As is well-known all symmetric spaces are naturally reductive,
but there are also many other examples. See for example [17].

The complete classification of the simply connected 3-dimensional naturally
reductive spaces is given in [17]. One obtains the symmetric spaces and further
the Lie groups SU(2), SL(2,R) and the Heisenberg group with some left-invariant
metric. Moreover, it is proved in [11] that the simply connected, complete, three-
dimensional spaces with volume-preserving geodesic symmetries are homogeneous
and naturally reductive.

Three-dimensional naturally reductive Lorentzian spaces have been investigated
by Cordero and Parker in [3], in order to determine the possible forms and the
symmetry groups of their curvature tensor. Afterward, G. Calvaruso and R.A.
Marinosci classified in [2] all three-dimensional Lorentzian g.o. spaces and naturally
reductive spaces.

The next step is to consider the four-dimensional manifolds. In [13], four-
dimensional naturally reductive homogeneous Riemannian spaces were considered,
and a full classification was given. In particular, one obtains the symmetric spaces or
the Riemannian product M3×R, where M3 is naturally reductive and isometric to

the Lie groups SU(2), ˜SL(2,R) and the Heisenberg group with some left-invariant
metric.

In this work, we want to consider four-dimensional naturally reductive mani-
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folds. Our study leads to a complete classification of the pseudo-Riemannian natu-
rally reductive ones.

A (connected) pseudo-Riemannian manifold (M, g) is homogeneous if there ex-
ists a connected Lie group G of isometries acting transitively and effectively on it
[16]. We recall here few results concerning homogeneous manifolds, in the Rieman-
nian and pseudo-Riemannian case. Denote by H the isotropy group at a fixed point
o ∈ M (the origin). Then (M, g) can be identified with (G/H, g). In general, there
exists more than one such group G ⊂ I(M) ( = full group of isometries of (M, g)).
For any fixed choice M = G/H, the Lie group G acts transitively and effectively
on G/H from the left. The pseudo-Riemmanian metric g of M can be considered
as a G-invariant metric on G/H. The pair (G/H, g) is called pseudo-Riemannian
homogeneous space. We denote by g and h the Lie algebras of G and H, respectively
and by m a complement of h in g. If m is stable under the action of h, the g = m⊕h
is called a reductive split, and (g, h) a reductive pair. Contrary to the Riemannian
case, for a pseudo-Riemannian homogeneous space (M = G/H, g) the Lie algebra
g of G needs not to admit a reductive decomposition.

A pseudo-Riemannian reductive homogeneous space (M = K/H, g) is called
naturally reductive if there exists at least one reductive split g = m⊕ h such that

(1.1) g([X,Y ]m, Z) + g([X,Z]m, Y ) = 0

for all X,Y, Z ∈ m. It is not always easy to decide whether a homogeneous (reduc-
tive) pseudo-Riemannian manifold is or is not naturally reductive, because condition
(1.1) must be checked for all groups of isometries acting transitively on M. It is also
well known that (1.1) holds if and only if the Levi-Civita connection of (M, g) and
the canonical connection (of the reductive split g = m ⊕ h) have exactly the same
geodesics [17].

Up to our knowledge, extensive studies have been made on the geometry of
a naturally reductive and homogeneous Riemannian and Lorentzian manifolds by
several authors (see [6], [1], [2], [4], [5], [7], [8], [9], [11], [12], [17], [18]).

In [7], P. M. Gadea and J. A. Oubiña introduced homogeneous pseudo-
Riemannian structures in order to obtain a characterization of reductive homo-
geneous pseudo-Riemannian manifolds similar to the one given for homogeneous
Riemannian manifolds by Ambrose and Singer [1]. More specifically, by using
the representation theory, they determined eight classes of homogeneous structures
which are defined by the invariant subspaces of a certain space T1 ⊕ T2 ⊕ T3. In
[8], the same authors obtained a classification of homogeneous pseudo-Riemannian
structures into eight primitive classes as Tricerri and Vanhecke made for the Rie-
mannian case [17]. Clearly, homogeneous spaces of type {0} are just symmetric
ones and for the case at hand, it is worth knowing that the homogeneous spaces
with a T3 structure are naturally reductive spaces.

The paper is organized in the following way. In Section 2, we shall recall the
basic definitions and properties of naturally reductive spaces. In Section 3, we shall
report the classification of four-dimensional naturally reductive pseudo-Riemannian
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manifolds.

2. Preliminaries on naturally reductive pseudo-Riemannian spaces

Let (M, g) be a (connected) homogeneous pseudo-Riemannian manifold. We say
that M is naturally reductive if there exists at least one reductive split g = m ⊕ h
such that

(2.1) < [X,Y ]m, Z > + < [X,Z]m, Y >= 0

for all X,Y, Z ∈ m. Here <,> denotes the induced pseudo-Riemannian metric from
g on m.
Let ∇̃ be the canonical connection of the homogeneous spaceM = G/H with respect
to a reductive decomposition g = m⊕ h. Then it holds

(2.2) [X,Y ]m = −T̃ (X,Y ), [X,Y ]h = −R̃(X,Y )

for X,Y ∈ m (under the canonical identification of m with the tangent space ToM),

where T̃ , R̃ denote the torsion tensor and the curvature tensor of ∇̃, respectively.
We remind that any G-invariant tensor field on M is parallel with respect to the
connection ∇̃.

We denote by ∇ the Levi-Civita connection of (M, g) and by R its curvature
tensor. Moreover, let us denote by

(2.3) D = ∇− ∇̃.

Then ∇̃ is the unique linear connection on M which is complete and has parallel
curvature R̃ and parallel torsion T̃ , that is,

(2.4) ∇̃R̃ = ∇̃T̃ = 0, ∇̃g = ∇̃D = 0.

Further, because R,∇R,∇2R, . . . , are G−invariant, we get

(2.5) ∇̃R = ∇̃(∇R) = . . . = ∇̃(∇kR) = . . . = 0, k = 1, 2, . . ..

By means (2.4) and (2.5), we get that the endomorphism R̃x(X,Y ), at any fixed
point x ∈ M , acts as a derivation on the tensor algebra T(To(M)):

(2.6)
R̃(X,Y ) · g = R̃(X,Y ) ·D = R̃(X,Y ) · T̃ = R̃(X,Y ) · R̃ = 0,

R̃(X,Y ) ·R = R̃(X,Y ) · (∇kR) = 0, k = 1, 2, . . ..

The tensors R̃ and T̃ are skew-symmetric and the two identities of Bianchi hold,
i.e.,

(2.7) SX,Y,ZR̃(X,Y )Z = SX,Y,Z T̃ (T̃ (X,Y ), Z)
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(2.8) SX,Y,ZR̃(T̃ (X,Y ), Z) = 0.

here S denotes the cyclic sum.
As concerns the Riemannian curvature tensor R, we have

(2.9) R(X,Y ) = R̃(X,Y ) + [DX , DY ] +DT̃ (X,Y ).

By (2.1) and by standard arguments we get

(2.10) DXY = −1

2
T̃ (X,Y ).

By using the first of Bianchi identities, the formula (2.9) becomes

(2.11) R(X,Y )Z = R̃(X,Y )Z − 1

4
SX,Y,ZR̃(X,Y )Z +

1

4
T̃ (Z, T̃ (X,Y )).

In [13], the authors gave the full classification of four-dimensional naturally
reductive Riemannian manifolds. More specifically, they proved

Theorem 2.1([13]). Let (M, g) be a four-dimensional simply connected naturally
reductive Riemannian manifold. Then M is either symmetric or it is a Riemannian
product of the form M = M3 × R, where M3 is again naturally reductive and
isometric to one of the following spaces:

a) SU(2),

b) ˜SL(2,R),

c) H3,

equipped with a special left-invariant metric.

Recall that H. Wu ([19], [20], [21]) extended De Rham decomposition theorem to
the pseudo-Riemannian context in which the decomposition of the manifold reflects
the decomposition of the tangent space into invariants subspaces of the holonomy
group that are non degenerate but may have degenerate invariant subspaces, that
is, may be reducible. By using the above results of Wu, the following criterions
hold, the standard proof of which is analogous to the Riemannian case (see [10],
[13]).

Proposition 2.2. Let (M, g) be a simply connected naturally reductive pseudo-
Riemannian space. Let the tangent space ToM at the origin admit an orthogonal
decomposition ToM = V1 ⊕ V2, such that the metric is nondegenerate on V1, and

(2.12)
πiT̃ (X,Y ) = T̃ (πiX,πiY )

πiR̃(X,Y )Z = R̃(πiX,πiY )πiZ

for i = 1, 2 and X,Y, Z ∈ ToM , where πi denotes the canonical projection on Vi.
Then M is a pseudo-Riemannian direct product (M, g) = (M1, g1)× (M2, g2), with
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dimMi = dimVi.

Proposition 2.3. Let (M, g) = (M1, g1) × (M2, g2) be a homogeneous pseudo-
Riemannian manifold which is a direct product. If (M, g) is a naturally reductive
then the factors (Mi, gi), i = 1, 2 are naturally reductive.

3. The classification in dimension four

Let (M, g) be a simply connected naturally reductive pseudo-Riemannian space
of dimension four, and let 0 ∈ M be its origin.

With respect to a pseudo-orthonormal basis {e1, e2, e3, e4} of ToM the torsion

T̃ takes the form

T̃ (ei, ej) = Σkεkt
k
ijek, i, j, k = 1, . . . , 4,

where εi = ±1. By applying (2.1) and (2.2), we have tkij + tjik = 0 and because of

the skew-symmetry of T̃ , we also get tkij + tkji = 0; thus, it follows

tkii = tiik = tiki = 0, i, k = 1, 2, 3, 4.

We can express T̃ in the following form:

(3.1)

T̃ (e1, e2) = ε3ae3 + ε4be4 T̃ (e2, e3) = ε1ae1 + ε4de4
T̃ (e1, e3) = −ε2ae2 + ε4ce4 T̃ (e2, e4) = ε1be1 − ε3de3
T̃ (e1, e4) = −ε2be2 − ε3ce3 T̃ (e3, e4) = ε1ce1 + ε2de2

with respect to a suitable pseudo-orthonormal basis {e1, . . . , e4}.
The Lie algebra of the isotropy subgroup of I(M) at the origin 0 can be iden-

tified, by the linear isotropy representation, with the algebra h of all the endomor-
phisms A : T0(M) → T0(M) which, as derivations of the tensor algebra T(T0(M)),
satisfy the conditions

(3.2) A(g) = A(R) = A(∇R) = . . . = A(∇kR) = 0, k = 1, 2, . . . .

From (2.6), we get that all the curvature transformations R̃(X,Y ) of the canon-
ical connection belong to the algebra h.

Let us suppose R̃(X,Y ) ̸= 0 (otherwise M is proved to be symmetric) and put

h(U, V ) = g(R̃(X,Y )U, V ). Thus, h is an exterior 2-form on T0(M); then there
exists a orthonormal basis of (T0M)∗, {ξ1, . . . , ξ4} such that

(3.3) h = λ ξ1 ∧ ξ2 + µ ξ3 ∧ ξ4, λµ ̸= 0.

Let consider the pseudo-orthonormal dual basis {E1, . . . , E4} of T0(M). The matrix
of h has components

(3.4) hij =


0 λ 0 0
−λ 0 0 0
0 0 0 µ
0 0 −µ 0
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and det (hij) = λ2µ2.

Let us calculate R̃(X,Y )Ei =
∑

k εkhikEk. We get

Proposition 3.1. There exists a pseudo-orthonormal basis {E1, . . . , E4} with re-

spect to which the endomorphism R̃(X,Y ) takes the form

R̃(X,Y ) = λ A+ µ B, λµ ̸= 0,

where A,B ∈ End(T0(M)) such that

AE1 = ε2E2, AE2 = −ε1E1, AE3 = AE4 = 0
BE1 = BE2 = 0, BE3 = ε4E4, BE4 = −ε3E3.

Proof. It holds R̃(X,Y )Ei =
∑

k εkR
k
i Ek, where Rk

i = g(R̃(X,Y )Ei, Ek) = hik.
Thus, we get

R̃(X,Y )E1 = ε2λE2 R̃(X,Y )E3 = ε4µE4

R̃(X,Y )E2 = −ε1λE1 R̃(X,Y )E4 = −ε3µE3.

This ends the proof. 2

Let us study the rank of the matrix of h, by distinguishing the signature of the
metric.

Case A: signature (2, 2).

1. rk h = 4: this means det hij ̸= 0, that is λµ ̸= 0.

In this case, there exists a suitable pseudo-orthonormal basis {E1, . . . , E4}
such as

< Ei, Ej >= εiδij , with ε1 = ε2 = +1 and ε3 = ε4 = −1, and

(3.5)
R̃(X,Y )E1 = λE2 R̃(X,Y )E2 = −λE1

R̃(X,Y )E3 = −µE4 R̃(X,Y )E4 = µE3.

By applying (λA+µB)(T̃ ) = 0 to (3.1), and taking into account the signature,
we get

(λA+ µB)(T̃ (E1, E2)) = T̃ ((λA+ µB)E1, E2) + T̃ (E1, (λA+ µB)E2)
⇔ µaE4 − µbE3 = 0,

(λA+ µB)(T̃ (E1, E3)) = T̃ ((λA+ µB)E1, E3) + T̃ (E1, (λA+ µB)E3)
⇔ λdE4 − µbE2 = 0,

(λA+ µB)(T̃ (E2, E3)) = T̃ ((λA+ µB)E2, E3) + T̃ (E2, (λA+ µB)E3)
⇔ λcE4 − µbE1 = 0.

Thus, we get the conditions: µa = µb = λc = λd = 0, that is, a = b = c =
d = 0, and so T̃ = 0. This means that M is symmetric.
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2. rk h < 4: in this case det hij = 0, that is λµ = 0. Then, λ ̸= 0 and
h = λξ1 ∧ ξ2.

With respect to a suitable pseudo-orthonormal basis {E1, . . . , E4} such as
< Ei, Ej >= εiδij , with ε1 = ε2 = +1 and ε3 = ε4 = −1, it holds

(3.6)
R̃(X,Y )E1 = λE2 R̃(X,Y )E2 = −λE1

R̃(X,Y )E3 = 0 R̃(X,Y )E4 = 0.

By applying A(T̃ ) = 0 to (3.1), with A = R̃(X,Y ), and taking into account
the signature, we get

A(T̃ (E1, E3)) = T̃ (AE1, E3) + T̃ (E1, AE3)
⇔ −λdE4 = 0,

A(T̃ (E2, E3)) = T̃ (AE2, E3) + T̃ (E2, AE3)
⇔ λcE4 = 0.

Thus, we get the conditions: c = d = 0. Rewriting (3.1), we get

(3.7)

T̃ (E1, E2) = −aE3 − bE4

T̃ (E1, E3) = −aE2

T̃ (E1, E4) = −bE2

T̃ (E2, E3) = aE1

T̃ (E2, E4) = bE1.

Then, if a = b = 0, T̃ = 0 and M is symmetric. Let us suppose (a, b) ̸= (0, 0),
(⇔ a2 + b2 ̸= 0). We introduce a new orthogonal basis

(3.8) e1 =
E1

ϱ
e2 =

E2

ϱ
e3 =

aE3 + bE4

ϱ2
e4 =

bE3 − aE4

ϱ2

with ϱ =
√
a2 + b2 > 0. Then (3.7) takes the form,

(3.9)

T̃ (e1, e2) = −e3 T̃ (e1, e4) = 0

T̃ (e1, e3) = −e2 T̃ (e2, e4) = 0

T̃ (e2, e3) = e1 T̃ (e3, e4) = 0.

By the second identity of Bianchi, we get

(3.10)
R̃(e2, e4) = R̃(e1, e4) = R̃(e3, e4) = 0

R̃(ei, ej)e4 = 0, i, j = 1, 2, 3.

We can conclude that, if (M, g) is a four-dimensional naturally reductive
pseudo-Riemannian manifold of neutral signature (2, 2), the decomposition ToM =
{e1, e2, e3} ⊕ {e4} satisfies the hypothesis of Proposition 2.2. Hence M is a direct
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product M = M3 × R, and M3 is a Lorentzian naturally reductive manifold, ac-
cording to Proposition 2.3. But the complete classification of all three-dimensional
non-symmetric naturally reductive Lorentzian spaces is known (see [2], [9]).

We are now able to get the following explicit classification:

Theorem 3.2. Let (M, g) be a four-dimensional connected, simply connected natu-
rally reductive pseudo-Riemannian manifold with neutral signature (2, 2). Then M
is symmetric or it is a product of the form M = M3 ×R, where M3 is isometric to
one of the following spaces:

a) SL(2,R),

b) SU(2),

c) H3,

equipped with a suitable left-invariant Lorentzian metric.

Case B: Lorentzian signature.

1. rk h = 4: this means det hij ̸= 0, that is λµ ̸= 0.

In this case, there exists a suitable pseudo-orthonormal basis {E1, . . . , E4}
such as < Ei, Ej >= εiδij , with ε1 = ε2 = ε3 = +1, ε4 = −1, and

(3.11)
R̃(X,Y )E1 = λE2 R̃(X,Y )E2 = −λE1

R̃(X,Y )E3 = −µE4 R̃(X,Y )E4 = −µE3.

By applying (λA+µB)(T̃ ) = 0 to (3.1), and taking into account the signature,
we get the conditions: µa = µb = λc = λd = 0, that is, a = b = c = d = 0,
and so T̃ = 0. This means that M is symmetric.

2. rk h < 4: in this case det hij = 0, that is λµ = 0. Then, µ ̸= 0 and
h = µξ3 ∧ ξ4.

With respect to a suitable pseudo-orthonormal basis {E1, . . . , E4} such as
< Ei, Ej >= εiδij , with ε1 = ε2 = ε3 = 1 and = ε4 = −1, it holds

(3.12)
R̃(X,Y )E1 = 0 R̃(X,Y )E2 = 0.

R̃(X,Y )E3 = −µE4 R̃(X,Y )E4 = −µE3.

By applying A(T̃ ) = 0 to (3.1), with A = R̃(X,Y ), and taking into account
the signature, we obtain

A(T̃ (E1, E2)) = T̃ (AE1, E2) + T̃ (E1, AE2)
⇔ −µaE4 + µbE3 = 0.
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Thus, since µ ̸= 0, we get the conditions: a = b = 0. Rewriting (3.1),
following formulas hold:

(3.13)

T̃ (E1, E2) = 0 T̃ (E2, E3) = −dE4

T̃ (E1, E3) = −cE4 T̃ (E2, E4) = −dE3

T̃ (E1, E4) = −cE3 T̃ (E3, E4) = cE1 + dE2.

Then, if c = d = 0, T̃ = 0 and M is symmetric. Let be (c, d) ̸= (0, 0),
(⇔ c2 + d2 ̸= 0). We can introduce a new orthogonal basis

(3.14) e1 =
cE1 + dE2

ϱ2
e2 =

dE1 − cE2

ϱ2
e3 =

E3

ϱ
e4 =

E4

ϱ

with ϱ =
√
c2 + d2 > 0. Then (3.13) takes the form,

(3.15)

T̃ (e1, e3) = −e4 T̃ (e1, e2) = 0

T̃ (e1, e4) = −e3 T̃ (e3, e2) = 0

T̃ (e3, e4) = e2 T̃ (e4, e2) = 0.

By the second identity of Bianchi, we get

(3.16)
R̃(e1, e2) = R̃(e3, e2) = R̃(e4, e2) = 0

R̃(ei, ej)e2 = 0, i, j = 1, 3, 4.

We can conclude that, if (M, g) is a four-dimensional naturally reductive
Lorentzian manifold, the decomposition ToM = {e1, e3, e4} ⊕ {e2} satisfies the
hypothesis of Proposition 2.2. Hence M is a direct product M = M3 ×R, and M3

is a Lorentzian naturally reductive manifold, according to Proposition 2.3. But the
complete classification of all three-dimensional non-symmetric naturally reductive
Lorentzian spaces is known (see [2], [9]).

We are now able to get the following explicit classification:

Theorem 3.3. Let (M, g) be a four-dimensional connected, simply connected natu-
rally reductive Lorentzian manifold. Then M is symmetric or it is a product of the
form M = M3 × R, where M3 is isometric to one of the following spaces:

a) SL(2,R),

b) SU(2),

c) H3,

equipped with a suitable left-invariant Lorentzian metric.
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