DOI QR코드

DOI QR Code

스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법

A User Profile-based Filtering Method for Information Search in Smart TV Environment

  • 신위살 (인하대학교 IT공과대학 정보공학과) ;
  • 오경진 (인하대학교 IT공과대학 정보공학과) ;
  • 조근식 (인하대학교 IT공과대학 컴퓨터정보공학부)
  • Sean, Visal (Department of Computer and Information Engineering, Inha University) ;
  • Oh, Kyeong-Jin (Department of Computer and Information Engineering, Inha University) ;
  • Jo, Geun-Sik (School of Computer and Information Engineering, Inha University)
  • 투고 : 2012.08.06
  • 심사 : 2012.08.13
  • 발행 : 2012.09.30

초록

인터넷 사용자는 비디오를 보면서 소셜 네트워크 서비스를 이용하고 웹 검색을 하고, 비디오에 나타난 상품에 관심이 있을 경우 검색엔진을 통해 정보를 찾는다. 비디오와 사용자의 직접적인 상호작용을 위해 비디오 어노테이션에 대한 연구가 진행되었고, 스마트 TV 환경에서 어노테이션 된 비디오가 활용될 경우 사용자는 객체에 대한 링크를 통해 원하는 상품의 정보를 쉽게 확인할 수 있게 된다. 사용자가 상품에 대한 구매를 원할 경우 상품에 대한 정보검색 이외에 상품평이나 소셜 네트워크 친구의 의견을 통해 구매 결정을 한다. 소셜 네트워크로부터 발생되는 정보는 다른 정보에 비해 신뢰도가 높아 구매 결정에 큰 영향을 미친다. 하지만 현재 소셜 네트워크 서비스는 의견을 얻고자 할 경우 모든 소셜 네트워크 친구들에게 전달되고 많은 의견을 얻게 되어 이들로부터 유용한 정보를 파악하는 것은 쉽지 않다. 본 논문에서는 소셜 네트워크 사용자의 프로파일을 기반으로 상품에 대해 유용한 정보를 제공할 수 있는 친구를 규명하기 위한 필터링 방법을 제안한다. 사용자 프로파일은 페이스북의 사용자 정보와 페이스북 페이지의 'Like' 정보를 이용하여 구성된다. 프로파일의 상품 정보는 GoodRelations 온톨로지와 BestBuy 데이터를 이용하여 의미적으로 표현된다. 사용자가 비디오를 보면서 상품 정보를 얻고자 할 경우 어노테이션된 URI를 이용하여 정보가 전달된다. 시스템은 소셜 네트워크 친구들에 대한 사용자 프로파일과 BestBuy를 기반으로 어노테이션된 상품에 대한 의미적 유사도를 계산하고 유사도 값에 따라 순위가 결정한다. 결정된 순위는 유용한 정보를 제공할 수 있는 소셜 네트워크 상의 친구를 규명하는데 사용된다. 참가자의 동의하에 페이스북 정보를 활용하였고, 시스템에 의해 도출된 결과와 참가자 인터뷰를 통해 평가된 결과를 이용하여 타당성을 검증하였다. 비교 실험의 결과는 제안하는 시스템이 상품 구매결정을 하기 위해 유용한 정보를 획득할 수 있는 방법임을 증명한다.

Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Aart, C. V., L. Aroyo, Y. Raimond, D. Brickley, G. Schreiber, M. Minno, L. Miller, D. Palmisano, M. Mostarda, R. Siebes, and V. Buser, The NoTube Beancounter : aggregating user data for television programme recommendation, in Proceedings of the Linked Data on the Web Workshop (LDOW 2009), Madrid, Spain, 2009.
  2. Ashraf, J., R. Cyganiak, S. O'Riain, and M. Hadzic, Open ebusiness ontology usage : Investigating community implementation of goodrelations, in Proceedings of the Linked Data on the Web WWW2011 Workshop, Hyderabad, India, 2011.
  3. Bertini, M., A. D. Bimbo, A. Ferracani, and D. Pezzatini, A Social Network for Video Annotation and Discovery Based on Semantic Profiling, in Proceedings of the 21st international conference companion on World Wide Web, Lyon, France, 2012.
  4. Berners-Lee, T., "Linked Data", W3C, http://www. w3.org/DesignIssues/LinkedData.html, 2006.
  5. Bizer, C., T. Heath, and T. Berners-Lee, "Linked Data-The Story So Far", Int'l. J. Semantic Web and Information Systems, Vol.5, No.3 (2009), 1-22.
  6. Choi, J. W. and H. J. Lee, "The Effects of Customer Product Review on Social Presence in Personalized Recommender Systems", Korean Journal of Intelligence and Information Systems, Vol.17, No.3(2011), 115-130.
  7. Handayani, P. W., Impact analysis on free online marketing using social network Facebook : Case study SMEs in Indonesia, in International Conference on Advanced Computer Science and Information System, Jakarta, Indonesia, 2011.
  8. Heath, T. and C. Bizer, Linked Data: Evolving the Web into a Global Data Space (1st edition). Synthesis Lectures on the Semantic Web : Theory and Technology, 1:1, 1-136. Morgan and Claypool, 2011.
  9. Hepp, M., GoodRelations: An Ontology for Describing Products and Services Offers on the Web, in Proceedings of the 16th International Conference on Knowledge Engineering and Knowledge Management (EKAW2008), Catania, Italy, 2008.
  10. Hepp, M., "GoodRelations : An Ontology for Describing Web Offers", Primer and User's Guide, http://www.heppnetz.de/projects/goodrelatio ns/primer/, 2008-b.
  11. Hepp, M., "GoodRelations : An Ontology for Describing Web Offerings", SEBIS Technical Report, http://www.heppnetz.de/projects/good relations/primer/, 2007.
  12. Hepp, M., eClassOWL : A Fully-Fledged Products and Services Ontology in OWL, in Proceedings of the 4th International Semantic Web Conference, Galway, Ireland, 2005.
  13. Kim, Y. A. and J. Srivastava, Impact of Social Influence in E-Commerce Decision Making, in Proceedings of the ninth international conference on Electronic commerce, Minneapolis, MN, USA, 2007.
  14. Kazuya, O., W. Chen, and X. Y. Li., Ranking of closeness centrality for large-scale social networks, in Proceedings of the 2nd annual international workshop on Frontiers in Algorithmics, Changsha, China, 2008.
  15. Lambert, D. and H. Q. Yu, Linked Data Based Video Annotation and Browsing for Distance Learning, in Proceedings of The Second International Workshop On Semantic Web Applications In Higher Education, Southampton, United Kingdom, 2010.
  16. Lee, Y. H., K. J. Oh, V. Sean, and G. S. Jo, "A Collaborative Video Annotation and Browsing System using Linked Data", Korean Journal of Intelligence and Information Systems, Vol.17, No.3(2011), 203-219.
  17. Park, J. H. and Y. H. Cho, "Social Network Analysis for the Effective Adoption of Recommender Systems", Korean Journal of Intelligence and Information Systems, Vol.17, No.4(2011), 305-316.
  18. Schroeter, R., J. Hunter, and D. Kosovic, Vannotea - a collaborative video indexing, annotation and discussion system for broadband networks, in Proceedings of K-CAP 2003 Workshop on Knowledge Markup and Semantic Annotation, Florida, USA, 2003.
  19. Sheng, H., H. Chen, T. Yu, and Y. Feng, Linked data-based semantic similarity and data mining, in Proceedings of the IEEE International Conference on Information Reuse and Integration, Las Vegas, USA, 2010.
  20. Sinha, R. and K. Swearingen, Comparing Recommendations Made by Online Systems and Friends, in Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries, Dublin, Ireland, 2001.
  21. Turban, E., D. King, J. Lee, T. P. Liang, and D. Turban, Electronic Commerce : A Managerial Perspective, Pearson Education, 2010.
  22. Yuen, J., B. Russell, C. Liu, and A. Torralba, LabelMe video : Building a video database with human annotations, in Proceedings of IEEE International Conference on Computer Vision, Kyoto, Japan, 2009.

피인용 문헌

  1. 개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법 vol.19, pp.3, 2012, https://doi.org/10.13088/jiis.2013.19.3.057