DOI QR코드

DOI QR Code

Recovery of Metallic Lithium by Room-Temperature Electrolysis: I. Effect of Electrode Materials

상온(常溫) 전해법(電解法)에 의한 리튬 금속(金屬)의 회수(回收): I. 전극물질(電極物質)의 영향(影響)

  • Lee, Jae-O (School of Advanced Materials & System Eng., Kumoh National Institute of Technology) ;
  • Park, Jesik (School of Advanced Materials & System Eng., Kumoh National Institute of Technology) ;
  • Lee, Churl Kyoung (School of Advanced Materials & System Eng., Kumoh National Institute of Technology)
  • 이재오 (김오공과대학교 신소재시스템공학부) ;
  • 박제식 (김오공과대학교 신소재시스템공학부) ;
  • 이철경 (김오공과대학교 신소재시스템공학부)
  • Received : 2012.07.27
  • Accepted : 2012.10.11
  • Published : 2012.12.31

Abstract

The room-temperature electrodeposition of metallic lithium was investigated from ionic liquid, 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) with lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) as a lithium source. Cyclic voltammograms on gold working electrode showed the possibility of the electrodeposition of metallic lithium, and the reduction current on a gold electrode was higher than the value on platinum and copper. The metallic lithium could be electrodeposited on the gold electrode under potentiostatic condition at -2.4 V (vs. Pt-QRE) and was confirmed by analytical techniques including XRD and SEM-EDS. The dendrite-typed electrodeposits were composed of a metallic lithium and a alloy with gold substrate. And any impurity could be detected except for trace oxygen introduced during handling for the analyses.

리튬 리싸이클링의 일환으로 상온 전해법으로 금속형태의 리튬을 회수하는 연구를 수행하였다. 리튬 전해액으로 이온성액체인 PP13TFSI에 리튬염으로 LiTFSI를 용해시켜 사용하였으며, 작동전극으로 금, 백금 및 구리를 각각 적용하였다. 작동전극 상에서 조사한 순환전위주사 실험 결과로부터 리튬의 상온 전해환원에 대한 가능성을 확인하였으며, 백금이나 구리의 경우 보다 금 전극에서 리튬 환원전류가 더 크게 나타났다. 정전위법(-2.4 V vs. Pt-QRE)으로 1시간동안 금 전극 상에 전착한 다음, 전극표면을 SEM-EDS 및 XRD 분석을 하였다. 전착된 리튬은 금속 리튬 혹은 금과의 합금 형태이었으며, 침상형으로 균일하게 전착되었음을 확인하였다. 또한 전착물에 미량의 산소가 검출되는 것은 분석과정에서 시편이 공기 중에 노출되었기 때문으로 판단된다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. T. Matui and K. Takeyyama, 1995: Lithium deposit morphology from polymer electrolytes, Electrochimica Acta, 40(13-14), pp. 2165-2169. https://doi.org/10.1016/0013-4686(95)00158-B
  2. S. Tobishima and T. Okada, 1985: Lithium cycling efficiency and conductivity for high dielectric solvent/low viscosity solvent mixed systems, Electrochimica Acta, 30(12), pp. 1715-1722. https://doi.org/10.1016/0013-4686(85)87019-5
  3. X. Yang, Z. Wen, X. Zhu and S. Huang, 2005: Electrodeposition of lithium film under dynamic conditions and its application in all-solid-state rechargeable lithium battery, Solid State Ionics, 176(11-12), pp. 1051-1055. https://doi.org/10.1016/j.ssi.2005.02.009
  4. H. Ohno and M. Yoshizawa, 2002: Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles, Solid State Ionics, 154-155, pp. 303-309. https://doi.org/10.1016/S0167-2738(02)00526-X
  5. M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, and Y. Ito, 2003: Application of Low-Viscosity Ionic Liquid to the Electrolyte of Double-Layer Capacitors, J. Electrochem. Soc., 150(4), pp. A499-A502. https://doi.org/10.1149/1.1559069
  6. C. Nanjundiah, S.F. McDevitt, and V.R. Koch, 1997: Differential Capacitance Measurements in Solvent-Free Ionic Liquids at Hg and C Interfaces, J. Electrochem. Soc., 144(10), pp. 3392-3397. https://doi.org/10.1149/1.1838024
  7. Y.S. Fung and R.Q. Zhou, 1999: Room temperature molten salt as medium for lithium battery, J. Power Sources, 81-82, pp. 891-895. https://doi.org/10.1016/S0378-7753(99)00127-5
  8. M. Egashira, T. Kiyabu, I. Watanabe, S. Okada, and J. Yamaki, 2003: The effect of Additives for Room Temperature Molten Salt-based Lithium Battery Electrolytes, Electrochemistry, 71(12), pp. 1114.
  9. H. Sakaebe, H. Matsumoto, and K. Tatsumi, 2007: Application of room temperature ionic liquids to Li batteries, Electrochimica Acta, 53(3, 20), p1048-1054. https://doi.org/10.1016/j.electacta.2007.02.054
  10. J.S. Wilkes and M.J. Zaworotko, 1992: Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, Chem. Commun., 54, pp. 965-967.
  11. H. Sakaebe and H. Matsumoto, 2005: Electrochemical Aspects of Ionic Liquids, edited by H. Ohno, John Wiley and Sons Inc., Hoboken, NJ, p. 173.
  12. B. Garcia, S. Lavall'ee, G. Perron, C. Michot, and M. Armand, 2004: Room temperature molten salts as lithium battery electrolyte, Electrochimica Acta, 49, pp. 4583-4588. https://doi.org/10.1016/j.electacta.2004.04.041
  13. J.S. Park, H.D. Jang, and C.K. Lee, 2012: Recovery of silicon from silicon sludge, J. of Korean Inst. of Resources Recycling, 21(5), pp.31-37. https://doi.org/10.7844/kirr.2012.21.5.31