• Title/Summary/Keyword: Room-temperature electrolysis

Search Result 4, Processing Time 0.02 seconds

A Basic Study on Non-aqueous Electrolysis of Neodymium for Room-temperature Metallurgy (상온제련을 위한 네오디뮴의 비수계 전해 기초연구)

  • Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.29-35
    • /
    • 2018
  • In this study, the electrochemical redox behavior of neodymium in non-aqueous electrolytes was investigated to confirm the possibility of neodymium metallurgy at room temperature. The non-aqueous electrolytes include ionic liquids such as $[C_4mim]PF_6$, $[C_4mim]Cl$, and $[P_{66614}]PF_6$, ethanol which are highly soluble in neodymium salts, and mixed electrolytes based on carbonate with highly electrochemical stability. The electrochemical redox properties of neodymium were better than those of other electrolytes in the case of the mixed electrolyte based on ethylene carbonate (EC)/di-ethylene carbonate (DEC). Ethanol was added to improve the physical properties of the mixed electrolyte. Thorough the analysis about ionic conductivity of EC/DEC ratio, ethanol content and $NdCl_3$ concentration, the best electrolyte composition was 50 vol% content of ethanol and 0.5 M of $NdCl_3$. Using cyclic voltametry and linear sweep voltametry, a current peak estimated at -3.8 V (vs. Pt-QRE) was observed as a limiting current of neodymium reduction. Potentiostatic electrolysis for 18 hours at room temperature at -6 V (vs. Pt-QRE) confirmed that metallic neodymium was electrodeposited.

Recovery of Metallic Lithium by Room-Temperature Electrolysis: I. Effect of Electrode Materials (상온(常溫) 전해법(電解法)에 의한 리튬 금속(金屬)의 회수(回收): I. 전극물질(電極物質)의 영향(影響))

  • Lee, Jae-O;Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.45-50
    • /
    • 2012
  • The room-temperature electrodeposition of metallic lithium was investigated from ionic liquid, 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) with lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) as a lithium source. Cyclic voltammograms on gold working electrode showed the possibility of the electrodeposition of metallic lithium, and the reduction current on a gold electrode was higher than the value on platinum and copper. The metallic lithium could be electrodeposited on the gold electrode under potentiostatic condition at -2.4 V (vs. Pt-QRE) and was confirmed by analytical techniques including XRD and SEM-EDS. The dendrite-typed electrodeposits were composed of a metallic lithium and a alloy with gold substrate. And any impurity could be detected except for trace oxygen introduced during handling for the analyses.

Effect of Hydrogen Charging on the Mechanical Properties of 304 Stainless Steels

  • Lee, Sang-Pill;Hwang, Seung-Kuk;Lee, Jin-Kyung;Son, In-Soo;Bae, Dong-Su
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.73-79
    • /
    • 2015
  • The effects of hydrogen charging on the mechanical properties of 304 stainless steels were investigated in conjunction with the detailed examinations of their fracture modes. The dependence of the absorbed impact energy and the surface hardness of the 304 stainless steels on the hydrogen charging time was characterized. The tensile properties of the 304 stainless steels by the variation of cross-head speed were also evaluated at the room temperature. The hydrogen charging was performed by an electrolysis method for all specimens of the 304 stainless steels. The mechanical properties of the 304 stainless steels exhibited the sensitivity of embrittlement due to a hydrogen charging. The correlation between mechanical properties and fracture surfaces was discussed.

A Study on the Standard Cell and Its Enclosure (표준전지 및 표준전지 항온함 제작에 관한 연구)

  • Euijin Hwang;Hwashim Lee;Jinuk Lee;Hong Yol Kang
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.857-863
    • /
    • 1992
  • Acid type saturated Weston cells that can be used as the standard of electromotive force unit were constructed and their characteristics in a specially designed enclosure were evaluated. Cadmium sulfate was purified by recrystallization under vaccum. Mercurous sulfate with dispersed mercury and the exact composition of cadmium amalgam were obtained by means of electrolysis. The enclosure was constructed using a commercial circulator. Temperature of the enclosure was only drifted in the range of ${\pm}$5 mK in the case of extreme change of room temperature. The electromotive force of standard cells was measured over the temperature range of 5∼${\sim} 30^{\circ}C$. The standard deviation of the electromotive forces was about 1 ppm.

  • PDF