DOI QR코드

DOI QR Code

Effects of Thermal and Electrical Conductivity of Al(OH)3 Functionalized Graphene/Epoxy Composites by Simple Sol-Gel Method

졸-젤 법을 이용한 Al(OH)3 처리된 그래핀/에폭시 복합체의 열 및 전기전도 특성 분석

  • Kim, Ji-Won (School of Chemical Engineering & Material Science, Chung-Ang University) ;
  • Im, Hyun-Gu (School of Chemical Engineering & Material Science, Chung-Ang University) ;
  • Han, Jung-Geun (School of Civil and Environmental Engineering, Urban Design and Studies, Chung-Ang University) ;
  • Kim, Joo-Heon (School of Chemical Engineering & Material Science, Chung-Ang University)
  • 김지원 (중앙대학교 화학신소재공학부) ;
  • 임현구 (중앙대학교 화학신소재공학부) ;
  • 한중근 (중앙대학교 사회기반시스템공학부) ;
  • 김주헌 (중앙대학교 화학신소재공학부)
  • Received : 2011.05.23
  • Accepted : 2011.08.11
  • Published : 2012.01.25

Abstract

Functionalized graphene/epoxy composites were prepared to miprove thermal conductivities of epoxy composites and to maintain electrical insulating property. Graphene oxide (GO) was prepared using Hummers method, and then GO was reacted with aluminum isopropoxide to functionalize $Al(OH)_3$ layer onto GO surface by a simple sol-gel method (Al-GO). GO and Al-GO were characterized by X-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. The analyses confirm that GO was coated with a large and dense coverage of $Al(OH)_3$. GO and Al-GO (1 and 3 wt%) were embedded in bisphenol A (DGEBA) to investigate the effects of electrical insulating property. Electrical resistivity showed that Al-GO had better insulating property than GO. Further, the thermal conductivity of GO and Al-GO/epoxy composites was higher than that of neat epoxy resins. In particular, the thermal conductivity of Al-GO/bisphenol F (DGEBF) improved by 23.3% and Al-GO/DGEBA enhanced by 21.8% compared with pure epoxy resins.

그래핀의 우수한 열적 특성을 이용하여 에폭시 수지의 열전도 특성을 향상시키며 전기 절연성질을 유지하는 기능화된 그래핀/에폭시 복합체를 제작하여 전기 및 열전도도를 측정하였다. 기능화된 그래핀은 Hummers법을 이용하여 산화그래핀(GO)을 얻어낸 후 aluminum isopropoxide를 졸-젤 반응을 통해 $Al(OH)_3$를 그래핀 표면에 도입하여 제작하였다(Al-GO). GO와 Al-GO의 기능화 여부 확인을 위하여 XPS, FE-SEM, FE-TEM 분석을 시행하였으며 GO 표면에 $Al(OH)_3$ 층이 생성된 것을 확인하였다. 기능화된 그래핀/에폭시 복합체는 bisphenol A(DGEBA) 계열의 에폭시에 1, 3 wt%의 GO와 Al-GO를 첨가하여 전기저항을 측정하였으며 Al-GO가 GO와 비교하여 전기 절연성질이 우수하였다. 또한 DGEBA와 bisphenol F(DGEBF) 계열의 에폭시에 1 wt%의 GO와 Al-GO를 첨가하여 열전도 특성을 비교하였으며 순수 에폭시 레진과 비교하여 Al-GO/DGEBF는 23.3%, Al-GO/DGEBA는 21.8%의 열전도도 증가를 보였다.

Keywords

Acknowledgement

Supported by : 중앙대학교

References

  1. R. S. Bauer, Epoxy resins chemistry, American Chemical Society, Washington D.C., 1979.
  2. C. A. May, Epoxy Resins, Marcel Pekker, New York, 1988.
  3. P. Kapur, J. P. McVittie, and K. C. Saraswat, IEEE Trans. Electron. Dev., 49, 590 (2002). https://doi.org/10.1109/16.992867
  4. V. V. N. Obreja, IEEE Int. Symp. Indus. Electron-ISIE06, 2, 835 (2006).
  5. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008). https://doi.org/10.1021/nl0731872
  6. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nature Nanotechnol., 3, 491 (2008). https://doi.org/10.1038/nnano.2008.199
  7. C. G. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  8. Y. Geng, J. Li, S. J. Wang, and J. K. Kim, J. Nanosci. Nanotechnol., 8, 6238 (2008). https://doi.org/10.1166/jnn.2008.342
  9. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nature Nanotechnol., 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
  10. T. Imai, F. Sawa, T. Nakano, T. OzaKi, T. Shimizu, M. Kozako, and T. Tanaka, IEEE T. Dielectr. El. In., 13, 319 (2006). https://doi.org/10.1109/TDEI.2006.1624276
  11. Y. Xu, D. D. L. Chung, and C. Mroz, Compos. Part A, 32, 1749 (2001). https://doi.org/10.1016/S1359-835X(01)00023-9
  12. L. C. Sim, S. R. Ramamam, H. Ismail, K. N. Seetharamu, and T. J. Goh. Thermichim. Acta, 430, 155 (2005). https://doi.org/10.1016/j.tca.2004.12.024
  13. A. Stti, P. Larpent, and Y. Gun'ko, Carbon, 48, 3376 (2010). https://doi.org/10.1016/j.carbon.2010.05.030
  14. S. Ganguli, A. K. Roy, and D. P. Anderson, Carbon, 46, 806 (2008). https://doi.org/10.1016/j.carbon.2008.02.008
  15. S. Stankovich, D. A. Dinkin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  16. J. M. Martin, L. Vovelle, M. Bou, and TH. Le Mogne, Appl. Surf. Sci., 47, 149 (1991). https://doi.org/10.1016/0169-4332(91)90029-J
  17. A. M. Beccaria, G. Castello, and G. Poggi, Brit. Corros. J., 30, 283 (1995). https://doi.org/10.1179/000705995798113709
  18. B. J. Meenan, J. A. Hewitt, and N. M. D. Brown, Surf. Interf. Anal., 18, 187 (1992). https://doi.org/10.1002/sia.740180304
  19. K. Hernadi, E. Couteau, J. W. Seo, and L. Forro, Langmuir, 19, 7026 (2003). https://doi.org/10.1021/la034432+
  20. A. Nylund and I. Olefjord, Surf. Interf. Anal., 21, 283 (1994). https://doi.org/10.1002/sia.740210504
  21. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kolhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  22. I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano Lett., 8, 4283 (2008). https://doi.org/10.1021/nl8019938
  23. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmennenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff, Nano Lett., 7, 1888 (2007). https://doi.org/10.1021/nl070477+
  24. A. Yasmin and I. M. Daniel, Polymer, 45, 8211 (2004). https://doi.org/10.1016/j.polymer.2004.09.054
  25. S. Y. Yang, C. C. M. Ma, C. C. Teng, Y. W. Huang, S. H. Liao, and Y. L. Huang, et al., Carbon, 48, 592 (2010). https://doi.org/10.1016/j.carbon.2009.08.047
  26. C. Lin and D. D. L. Chung, Carbon, 47, 295 (2009). https://doi.org/10.1016/j.carbon.2008.10.011
  27. M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer, Appl. Phys. Lett., 80, 29767 (2002).