DOI QR코드

DOI QR Code

Enhancing the Hexavalent Chromium Bioremediation Potential of Acinetobacter junii VITSUKMW2 Using Statistical Design Experiments

  • Received : 2012.03.28
  • Accepted : 2012.07.30
  • Published : 2012.12.28

Abstract

The Cr(VI) removal capability of Acinetobacter junii VITSUKMW2 isolated from the Sukinda chromite mine site was evaluated and enhanced using statistical design techniques. The removal capacity was evaluated at different pH values (5-11) and temperatures ($30-40^{\circ}C$) and with various carbon and nitrogen sources. Plackett-Burman design was used to select the operational parameters for bioremediation of Cr(VI). Three parameters (molasses, yeast extract, and Cr(VI) concentration) were chosen for further optimization using central composite design. The optimal combination of parameters was found to be 14.85 g/l molasses, 4.72 g/l yeast extract, and 54 mg/l initial Cr(VI), with 99.95% removal of Cr(VI) in 12 h. A. junii VITSUKMW2 was shown to have significant potential for removal of Cr(VI).

Keywords

References

  1. Bhadra, B., A. K. Nanda, and R. Chakraborty. 2006. Inducible nickel resistance in a river isolate of India phylogenetically ascertained as a novel strain of Acinetobacter junii. World J. Microbiol. Biotechnol. 22: 225-232. https://doi.org/10.1007/s11274-005-9026-z
  2. Cardenas-Gonzalez, J. F. and I. Acosta-Rodriguez. 2010. Hexavalent chromium removal by a Paecilomyces sp. fungal strain isolated from environment. Bioinorg. Chem. Appl. 22: 9-16.
  3. Cheung, K. H. and J.-D. Gu. 2007. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. Int. Biodeterior. Biodegrad. 59: 8-15. https://doi.org/10.1016/j.ibiod.2006.05.002
  4. Colin, V. L., L. B. Villegas, and C. M. Abate. 2012. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. Int. Biodeterior. Biodegrad. 69: 28-37.
  5. Da'na, E. and A. Sayari. 2010. Optimization of copper removal efficiency by adsorption on amine-modified SBA-15: Experimental design methodology. Chem. Eng. J. 167: 91-98.
  6. Dermou, E. and D. V. Vayenas. 2008. Biological Cr(VI) reduction in a trickling filter under continuous operation with recirculation. J. Chem. Technol. Biotechnol. 83: 871-877. https://doi.org/10.1002/jctb.1882
  7. Dhakate, R., V. S. Singh, and G. K. Hodlur. 2008. Impact assessment of chromite mining on groundwater through simulation modeling study in Sukinda chromite mining area, Orissa, India. J. Hazard. Mater. 160: 535-547. https://doi.org/10.1016/j.jhazmat.2008.03.053
  8. Derringer, G. and R. Suich. 1980. Simultaneous optimization of several response variables. J. Qual. Technol. 12: 214-221.
  9. Elangovan, R. and L. Philip. 2009. Performance evaluation of various bioreactors for the removal of Cr(VI) and organic matter from industrial effluent. Biochem. Eng. J. 44: 174-186. https://doi.org/10.1016/j.bej.2008.11.014
  10. Goyal, N., S. C. Jain, and U. C. Banerjee. 2003. Comparative studies on the microbial adsorption of heavy metals. Adv. Environ. Res. 7: 311-319. https://doi.org/10.1016/S1093-0191(02)00004-7
  11. He, Z., F. Gao, T. Sha, Y. Hu, and C. He. 2009. Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J. Hazard. Mater. 163: 869-873. https://doi.org/10.1016/j.jhazmat.2008.07.041
  12. Hrenovi , J., Y. Orhan, H. Buyukgungor, and M. Horvati ek. 2007. Influence of ammonium, nitrate and nitrite on the performance of the pure culture of Acinetobacter junii. Biologia 62: 517-522. https://doi.org/10.2478/s11756-007-0102-8
  13. Jeyasingh, J. and L. Philip. 2005. Bioremediation of chromium contaminated soil: Optimization of operating parameters under laboratory conditions. J. Hazard. Mater. 118: 113-120. https://doi.org/10.1016/j.jhazmat.2004.10.003
  14. Kilic, N. K. and G. Donmez. 2007. Hexavalent chromium bioaccumulation by Micrococcus sp. isolated from tannery wastewaters. Fresen. Environ. Bull. 16: 1571-1577.
  15. Lee, S. E., J. U. Lee, H. T. Chon, and J. S. Lee. 2008. Microbiological reduction of hexavalent chromium by indigenous chromium-resistant bacteria in sand column experiments. Environ. Geochem. Health 30: 141-145. https://doi.org/10.1007/s10653-008-9132-6
  16. Leles, D. M. A., D. A. Lemos, U. C. Filho, L. L. Romanielo, M. M. de Resende, and V. L. Cardoso. 2012. Evaluation of the bioremoval of Cr(VI) and TOC in biofilters under continuous operation using response surface methodology. Biodegradation 23: 441-454. https://doi.org/10.1007/s10532-011-9523-8
  17. Mariano-da-Silva, S., S. L. de Oliveira, C. A. O. Leite, R. S. do Prado, F. P. de Faria, R. C. N. Oliveira, and F. M. S. Marianoda- Silva. 2009. Effect of pH, dextrose and yeast extract on cadmium toxicity on Saccharomyces cerevisiae PE-2. Cienc. Tecnol. Alimen. 29: 295-299. https://doi.org/10.1590/S0101-20612009000200009
  18. Montgomery, D. C. 2006. Designed experiments in process improvement. Qual. Reliab. Eng. Int. 22: 863-864. https://doi.org/10.1002/qre.847
  19. Montgomery, D. C. 2008. Design and Analysis of Experiments. John Wiley and Sons, New York.
  20. Montgomery, D. C., C. M. Borror, and J. D. Stanley. 1998. Some cautions in the use of Plackett-Burman designs. Qual. Eng. 10: 371-381.
  21. Myers, R. H., D. C. Montgomery, G. G. Vining, C. M. Borror, and S. M. Kowalski. 2004. Response surface methodology: A retrospective and literature survey. J. Qual. Technol. 36: 53-78.
  22. Orozco, A. M. F., E. M. Contreras, and N. E. Zaritzky. 2010. Cr(VI) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication. J. Hazard. Mater. 176: 657-665. https://doi.org/10.1016/j.jhazmat.2009.11.082
  23. Orozco, A. M. F., E. M. Contreras, and N. E. Zaritzky. 2011. Effects of combining biological treatment and activated carbon on hexavalent chromium reduction. Bioresour. Technol. 102: 2495-2502. https://doi.org/10.1016/j.biortech.2010.11.041
  24. Plackett, R. L. and J. P. Burman. 1944. The design of optimum multifactorial experiments. Biometrica 33: 305-325.
  25. Prasenjit, B. and S. Sumathi. 2005. Uptake of chromium by Aspergillus foetidus. J. Mater. Cycles Waste Manage. 7: 88-92. https://doi.org/10.1007/s10163-005-0131-8
  26. Quintelas, C., B. Fonseca, B. Silva, H. Figueiredo, and T. Tavares. 2009. Treatment of chromium(VI) solutions in a pilotscale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Bioresour. Technol. 100: 220-226. https://doi.org/10.1016/j.biortech.2008.05.010
  27. Samuel, J., M. L. Paul, M. Pulimi, M. J. Nirmala, N. Chandrasekaran, and A. Mukherjee. 2012. Hexavalent chromium bioremoval through adaptation and consortia development from Sukinda chromite mine isolates. Ind. Eng. Chem. Res. 51: 3740-3749. https://doi.org/10.1021/ie201796s
  28. Shakoori, A. R., M. Makhdoom, and R. U. Haq. 2000. Hexavalent chromium reduction by a dichromate-resistant grampositive bacterium isolated from effluents of tanneries. Appl. Microbiol. Biotechnol. 53: 348-351. https://doi.org/10.1007/s002530050033
  29. Somasundaram, V., L. Philip, and S. M. Bhallamudi. 2011. Laboratory scale column studies on transport and biotransformation of Cr(VI) through porous media in presence of CRB, SRB and IRB. Chem. Eng. J. 171: 572-581. https://doi.org/10.1016/j.cej.2011.04.032
  30. Srivastava, S. and I. S. Thakur. 2006. Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresour. Technol. 97: 1167-1173. https://doi.org/10.1016/j.biortech.2005.05.012
  31. Srivastava, S. and I. S. Thakur. 2007. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18: 637-646. https://doi.org/10.1007/s10532-006-9096-0
  32. Tiwary, R., R. Dhakate, V. Ananda Rao, and V. Singh. 2005. Assessment and prediction of contaminant migration in ground water from chromite waste dump. Environ. Geol. 48: 420-429. https://doi.org/10.1007/s00254-005-1233-2
  33. Villegas, L. B., P. M. Fernández, M. J. Amoroso, and L. I. C. De Figueroa. 2008. Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina. BioMetals 21: 591-600. https://doi.org/10.1007/s10534-008-9145-8
  34. Xu, L., M. Luo, W. Li, X. Wei, K. Xie, L. Liu, et al. 2011. Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions. J. Hazard. Mater. 185: 1169-1176. https://doi.org/10.1016/j.jhazmat.2010.10.028

Cited by

  1. Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances vol.59, pp.4, 2012, https://doi.org/10.1007/s12223-014-0304-8
  2. Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent vol.28, pp.4, 2014, https://doi.org/10.1080/13102818.2014.937092
  3. Optimization of chromium and tannic acid bioremediation by Aspergillus niveus using Plackett–Burman design and response surface methodology vol.7, pp.1, 2012, https://doi.org/10.1186/s13568-017-0504-0
  4. Chromate detoxification potential of Staphylococcus sp. isolates from an estuary vol.28, pp.4, 2012, https://doi.org/10.1007/s10646-019-02038-w
  5. Operational Characteristics of Immobilized Ochrobactrum sp. CUST210-1 Biosystem and Immobilized Chromate Reductase Biosystem in Continuously Treating Actual Chromium-Containing Wastewater vol.10, pp.17, 2012, https://doi.org/10.3390/app10175934
  6. Microbial Mechanisms for Remediation of Hexavalent Chromium and their Large-Scale Applications; Current Research and Future Directions vol.15, pp.1, 2021, https://doi.org/10.22207/jpam.15.1.32
  7. Enhanced biostimulation coupled with a dynamic groundwater recirculation system for Cr(VI) removal from groundwater: A field-scale study vol.772, pp.None, 2012, https://doi.org/10.1016/j.scitotenv.2021.145495