DOI QR코드

DOI QR Code

Kinetic Studies of Alkaline Protease from Bacillus licheniformis NCIM-2042

  • Bhunia, Biswanath (Department of Biotechnology, National Institute of Technology) ;
  • Basak, Bikram (Department of Biotechnology, National Institute of Technology) ;
  • Bhattacharya, Pinaki (Department of Chemical Engineering, Heritage Institute of Technology) ;
  • Dey, Apurba (Department of Biotechnology, National Institute of Technology)
  • Received : 2012.06.07
  • Accepted : 2012.08.25
  • Published : 2012.12.28

Abstract

An extensive investigation was carried out to describe the kinetics of cell growth, substrate consumption, and product formation in the batch fermentation using starch as substrate. Evaluation of intrinsic kinetic parameters was carried out using a best-fit unstructured model. A nonlinear regression technique was applied for computational purpose. The Andrew's model showed a comparatively better $R^2$ value among all tested models. The values of specific growth rate (${\mu}_{max}$), saturation constant ($K_S$), inhibition constant ($K_I$), and $Y_{X/S}$ were found to be 0.109 $h^{-1}$, 11.1 g/l, 0.012 g/l, and 1.003, respectively. The Leudeking-Piret model was used to study the product formation kinetics and the process was found to be growth-associated. The growth-associated constant (${\alpha}$) for protease production was sensitive to substrate concentration. Its value was fairly constant up to a substrate concentration of 30.8 g/l, and then decreased.

Keywords

References

  1. Andrews, J. F. 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10: 702-723.
  2. Anwar, A. and M. Saleemuddin. 2000. Alkaline protease from Spilosoma obliqua: Potential applications in bio-formulations. Biotechnol. Appl. Biochem. 31: 85-89. https://doi.org/10.1042/BA19990078
  3. Bergmeyer, H. U. and E. Bernt. 1974. Methods of Enzymatic Analysis, pp. 1205-1212. 2nd Ed. Academic Press, New York.
  4. Bhunia, B., K. K. Behera, A. Baquee, and H. P. Sharma. 2010. Optimization of alkaline protease activity from Bacillus subtilis 2724 by response surface methodology (RSM). Int. J. Biol. Sci. Eng. 1: 158-169.
  5. Bhunia, B. and A. Dey. 2012. Statistical approach for optimization of physiochemical requirements on alkaline protease production from Bacillus licheniformis NCIM 2042. Enzyme Res. 2012: 905804.
  6. Bhunia, B., D. Dutta, and S. Chaudhuri. 2010. Selection of suitable carbon, nitrogen and sulphate source for the production of alkaline protease by Bacillus licheniformis NCIM-2042. Not. Sci. Biol. 2: 56-59.
  7. Bhunia, B., D. Dutta, and S. Chaudhuri. 2011. Extracellular alkaline protease from Bacillus licheniformis NCIM-2042: Improving enzyme activity assay and characterization. Eng. Life Sci. 11: 207-215. https://doi.org/10.1002/elsc.201000020
  8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  9. Divyashree, M. S., N. K. Rastogi, and T. R. Shamala. 2009. A simple kinetic model for growth and biosynthesis of polyhydroxyalkanoate in Bacillus flexus. N Biotechnol. 26: 92-98. https://doi.org/10.1016/j.nbt.2009.04.004
  10. Englyst, H. N., S. M. Kingman, and J. H. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46(Suppl 2): S33-S50.
  11. Gaden, E. L. 2000. Fermentation process kinetics. Biotechnol. Bioeng. 67: 629-635. https://doi.org/10.1002/(SICI)1097-0290(20000320)67:6<629::AID-BIT2>3.0.CO;2-P
  12. Griffin, H. L., R. V. Greene, and M. A. Cotta. 1992. Isolation and characterization of an alkaline protease from the marine shipworm bacterium. Curr. Microbiol. 24: 111-117. https://doi.org/10.1007/BF01570907
  13. Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32. https://doi.org/10.1007/s00253-002-0975-y
  14. Haki, G. D. and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6
  15. Jamuna, R., N. Saswathi, R. Sheela, and S. V. Ramakrishna. 1993. Synthesis of cyclodextrin glucosyl transferase by Bacillus cereus for the production of cyclodextrins. Appl. Biochem. Biotechnol. 43: 163-176. https://doi.org/10.1007/BF02916450
  16. Kono, T. and T. Asai. 1969. Kinetics of fermentation processes. Biotechnol. Bioeng. 11: 293-321. https://doi.org/10.1002/bit.260110304
  17. Kumar, N., P. S. Monga, A. K. Biswas, and D. Das. 2000. Modeling and simulation of clean fuel production by Enterobacter cloacae IIT-BT 08. Int. J. Hydrogen Energy 25: 945-952. https://doi.org/10.1016/S0360-3199(00)00017-3
  18. Liu, J. Z., L. P. Weng, Q. L. Zhang, H. Xu, and L. N. Ji. 2003. A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochem. Eng. J. 14: 137-141 https://doi.org/10.1016/S1369-703X(02)00169-9
  19. Luedeking, R. and E. L. Piret. 2000. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnol. Bioeng. 67: 636-644. https://doi.org/10.1002/(SICI)1097-0290(20000320)67:6<636::AID-BIT3>3.0.CO;2-U
  20. Monod, J. 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 3: 371-394. https://doi.org/10.1146/annurev.mi.03.100149.002103
  21. Nakamura, N. and K. Horikoshi. 1976. Characterization and some cultural conditions of a cyclodextrin glycosyltransferase-producing alkalophilic Bacillus sp. Agric. Biol. Chem. 40: 753-757. https://doi.org/10.1271/bbb1961.40.753
  22. Park, T. H., H. D. Shin, and Y. H. Lee. 1999. Characterization of the ${\beta}$-cyclodextrin glucanotransferase gene of Bacillus firmus var. alkalophilus and its expression in E. coli J. Microbiol. Biotechnol. 9: 811-819.
  23. Prakasham, R. S., Ch. Subba Rao, R. Sreenivas Rao, and P. N. Sarma. 2007. Enhancement of acid amylase production by an isolated Aspergillus awamori. J. Appl. Microbiol. 102: 204-211. https://doi.org/10.1111/j.1365-2672.2006.03058.x
  24. Prakasham, R. S., Ch. Subba Rao, and P. N. Sarma. 2006. Green gram husk - an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97: 1449-1454. https://doi.org/10.1016/j.biortech.2005.07.015
  25. Rajendran, A. and V. Thangavelu. 2008. Evaluation of various unstructured kinetic models for the production of protease by Bacillus sphaericus MTCC511. Eng. Life Sci. 8: 179-185. https://doi.org/10.1002/elsc.200700033
  26. Rao, S. Ch., T. Sathish, M. Mahalaxmi, G. S. Laxmi, R. S. Rao, and R. S. Prakasham. 2008. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. J. Appl. Microbiol. 104: 889-898. https://doi.org/10.1111/j.1365-2672.2007.03605.x
  27. Rao, C. S., T. Sathish, P. Brahamaiah, T. P. Kumarb, and R. S. Prakashama. 2009. Development of a mathematical model for Bacillus circulans growth and alkaline protease production kinetics. J. Chem. Technol. Biotechnol. 84: 302-307. https://doi.org/10.1002/jctb.2040
  28. Rao, R. S., R. S. Prakasham, K. K. Prasad, S. Rajesham, P. N. Sarma, and L. V. Rao. 2004. Xylitol production by Candida sp.: Parameter optimization using Taguchi approach. Process Biochem. 39: 951-956. https://doi.org/10.1016/S0032-9592(03)00207-3
  29. Shah, K., K. Mody, J. Keshri, and B. Jha. 2010. Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat. J. Molec. Catal. B Enz. 67: 85-91. https://doi.org/10.1016/j.molcatb.2010.07.010
  30. Shuler, M. L. and F. Kargi. 2008. Bioprocess Engineering: Basic Concepts. Practice Hall of India Private Limited, New Delhi.
  31. Srinivasulu, B., R. S. Prakasham, J. Annapurna, S. Srinivas, P. Ellaiah, and S. V. Ramakrishna. 2002. Neomycin production with free and immobilized cells of Streptomyces marinensis in an airlift reactor. Process Biochem. 38: 593-598. https://doi.org/10.1016/S0032-9592(02)00182-6
  32. Subba Rao, C., S. S. Madhavendra, R. Sreenivas Rao, P. J. Hobbs, and R. S. Prakasham. 2008. Studies on improving the immobilized bead reusability and alkaline protease production by isolated immobilized Bacillus circulans (MTCC 6811) using overall evaluation criteria. Appl. Biochem. Biotechnol. 150: 65-83. https://doi.org/10.1007/s12010-008-8147-x
  33. Underkoefler, L. A. and R. J. Hickey. 1954. Industrial Fermentations, Vol. 1. Chemical Publishing Co., New York.
  34. Vazquez, J. A. and M. A. Murado. 2008. Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation. J. Chem. Technol. Biotechnol. 83: 91-96. https://doi.org/10.1002/jctb.1789

Cited by

  1. Kinetics of rapamycin production by Streptomyces hygroscopicus MTCC 4003 vol.4, pp.5, 2012, https://doi.org/10.1007/s13205-013-0189-2
  2. 1H NMR-based metabolomics approach for understanding the fermentation behaviour ofBacillus licheniformis : The fermentation behaviour ofB.Licheniformis vol.121, pp.3, 2015, https://doi.org/10.1002/jib.238
  3. Optimization of nutritional and physiochemical requirements on acidic xylanase production from Aspergillus niger KP874102.1 vol.3, pp.10, 2012, https://doi.org/10.1016/j.matpr.2016.10.018
  4. Evaluation of model parameters for growth, tannic acid utilization and tannase production in Bacillus gottheilii M2S2 using polyurethane foam blocks as support vol.7, pp.5, 2012, https://doi.org/10.1007/s13205-017-0909-0
  5. Bioreactor Analysis for the Corn-Cob Valorization in the Xylanase Production vol.9, pp.6, 2012, https://doi.org/10.1007/s12649-016-9754-3
  6. Optimization of Process Parameters for Production of Pectinase using Bacillus Subtilis MF447840.1 vol.13, pp.1, 2012, https://doi.org/10.2174/1872208312666180917094428
  7. A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask vol.25, pp.1, 2012, https://doi.org/10.4491/eer.2018.416
  8. Rapid Protocol for Screening of Biocatalyst for Application in Microbial Fuel Cell: A Study with Shewanella algae vol.45, pp.6, 2012, https://doi.org/10.1007/s13369-020-04444-3
  9. Optimized production of extracellular alkaline protease from Aspergillus tamarii with natural by-products in a batch stirred tank bioreactor vol.50, pp.10, 2012, https://doi.org/10.1080/10826068.2020.1777426
  10. Isolation, production and optimization of endogenous alkaline protease from in-situ sludge and its evaluation as sludge hydrolysis enhancer vol.83, pp.11, 2021, https://doi.org/10.2166/wst.2021.167
  11. Calcium alginate-bentonite/activated biochar composite beads for removal of dye and Biodegradation of dye-loaded composite after use: Synthesis, removal, mathematical modeling and biodegradation kinet vol.24, pp.None, 2012, https://doi.org/10.1016/j.eti.2021.101955
  12. Biodegradation of 4-chlorophenol in batch and continuous packed bed reactor by isolated Bacillus subtilis vol.301, pp.None, 2022, https://doi.org/10.1016/j.jenvman.2021.113851