DOI QR코드

DOI QR Code

Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato

  • Bae, Ju Young (Department of Medical Bioscience, Dong-A University) ;
  • Wu, Jing (Department of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University) ;
  • Lee, Hyoung Ju (Department of Applied Biology, Dong-A University) ;
  • Jo, Eun Jeong (Department of Medical Bioscience, Dong-A University) ;
  • Murugaiyan, Senthilkumar (Department of Agricultural Microbiology, Tamil Nadu Agricultural University) ;
  • Chung, Eunsook (Department of Medical Bioscience, Dong-A University) ;
  • Lee, Seon-Woo (Department of Medical Bioscience, Dong-A University)
  • Received : 2012.08.28
  • Accepted : 2012.09.06
  • Published : 2012.12.28

Abstract

Bacterial wilt caused by Ralstonia solanacearum is a devastating disease of many economically important crops. Since there is no promising control strategy for bacterial wilt, phage therapy could be adopted using virulent phages. We used phage PE204 as a model lytic bacteriophage to investigate its biocontrol potential for bacterial wilt on tomato plants. The phage PE204 has a short-tailed icosahedral structure and double-stranded DNA genome similar to that of the members of Podoviridae. PE204 is stable under a wide range of temperature and pH, and is also stable in the presence of the surfactant Silwet L-77. An artificial soil microcosm (ASM) to study phage stability in soil was adopted to investigate phage viability under a controlled system. Whereas phage showed less stability under elevated temperature in the ASM, the presence of host bacteria helped to maintain a stable phage population. Simultaneous treatment of phage PE204 at $10^8$ PFU/ml with R. solanacearum on tomato rhizosphere completely inhibited bacterial wilt occurrence, and amendment of Silwet L-77 at 0.1% to the phage suspension did not impair the disease control activity of PE204. The biocontrol activities of phage PE204 application onto tomato rhizosphere before or after R. solanacearum inoculation were also investigated. Whereas pretreatment with the phage was not effective in the control of bacterial wilt, post-treatment of PE204 delayed bacterial wilt development. Our results suggested that appropriate application of lytic phages to the plant root system with a surfactant such as Silwet L-77 could be used to control the bacterial wilt of crops.

Keywords

Acknowledgement

Supported by : Dong-A University

References

  1. Askora, A., T. Kawasaki, S. Usami, M. Fujie, and T. Yamada. 2009. Host recognition and integration of filamentous phage ${\Phi}RSM$ in the phytopathogen, Ralstonia solanacearum. Virology 384: 69-76. https://doi.org/10.1016/j.virol.2008.11.007
  2. Balogh, B., J. B. Jones, F. B. Iriarte, and M. T. Momol. 2010. Phage therapy for plant disease control. Curr. Pharm. Biotechnol. 11: 48-57. https://doi.org/10.2174/138920110790725302
  3. Capra, M. L., A. Quiberoni, and J. A. Reinheimer. 2004. Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Lett. Appl. Microbiol. 38: 499-504. https://doi.org/10.1111/j.1472-765X.2004.01525.x
  4. Cating, R. A., M. A. Hoy, and A. J. Palmateer. 2010. Silwet L-77 Improves the efficacy of horticultral oils for control of boisduval scale Diaspis boisduvalii (Hemiptera: Diaspididae) and the flat mite Tenuipalpus pacificus (Arachnida: Acari: Tenuipalpidae) on orchids. Fla. Entomol. 93: 100-106. https://doi.org/10.1653/024.093.0113
  5. Chattopadhyay, D., S. Chattopadhyay, W. G. Lyon, and J. T. Wilson. 2002. Effects of surfactants on the survival and sorption of viruses. Environ. Sci. Technol. 36: 4017-4024. https://doi.org/10.1021/es0114097
  6. Ellis, R. J. 2004. Artificial soil microcosm: A tool for studying microbial autecology under controlled conditions. J. Microbiol. Methods. 56: 287-290. https://doi.org/10.1016/j.mimet.2003.10.005
  7. Fegan, M. and P. Prior. 2005. How complex is the Ralstonia solanacearum species complex?, pp. 449-462. In C. Allen, P. Prior, and A. C. Hayward (eds.). Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. APS Press, St. Paul.
  8. Fujiwara, A., T. Kawasaki, S. Usami, M. Fujie, and T. Yamada. 2008. Genomic characterization of Ralstonia solanacearum phage RSA1 and its related prophage (RSX) in strain GMI1000. J. Bacteriol. 190: 143-156. https://doi.org/10.1128/JB.01158-07
  9. Fujiwara, A., M. Fujisawa, R. Hamasaki, T. Kawasaki, M. Fujie, and T. Yamada. 2011. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl. Environ. Microbiol. 77: 4155-4162. https://doi.org/10.1128/AEM.02847-10
  10. Gottwald, T. R., J. H. Graham, and T. D. Riley. 1997. The influence of spray adjuvants on exacerbation of citrus bacterial spot. Plant Dis. 81: 1305-1310. https://doi.org/10.1094/PDIS.1997.81.11.1305
  11. Grey, B. and T. R. Steck. 2001. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl. Environ. Microbiol. 67: 3866-3872. https://doi.org/10.1128/AEM.67.9.3866-3872.2001
  12. Gu, G., J. Hu, J. M. Cevallos-Cevallos, S. M. Richardson, J. A. Bartz, and A. H. van Bruggen. 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS ONE 6: e27340. https://doi.org/10.1371/journal.pone.0027340
  13. Hayward, A. C. 1964. Characteristics of Pseudmonas solanacearum. J. Appl. Bacteriol. 27: 265-277. https://doi.org/10.1111/j.1365-2672.1964.tb04912.x
  14. Hayward, A. C. 2000. Ralstonia solanacearum, pp. 32-42. In J. Lederberg (ed.). Encyclopedia of Microbiology, Vol 4. Academic Press, San Diego.
  15. Hayward, A. C., H. M. El-Nashaar, U. Nydegger, and L. De Lindo. 1990. Variation in nitrate metabolism in biovars of Pseudomonas solanacearum. J. Appl. Bacteriol. 69: 269-280. https://doi.org/10.1111/j.1365-2672.1990.tb01518.x
  16. He, L. Y., L. Sequiera, and A. Kelman. 1983. Characteristics of strains of Pseudomonas solacearum from China. Plant Dis. 67: 1357-1361. https://doi.org/10.1094/PD-67-1357
  17. Iriarte, F. B., B. Balogh, M. T. Momol, L. M. Smith, M. Wilson, and J. B. Jones. 2007. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microbiol. 73: 1704-1711. https://doi.org/10.1128/AEM.02118-06
  18. Jeong, Y., J. Kim, Y. Kang, S. Lee, and I. Hwang. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91: 1277-1287. https://doi.org/10.1094/PDIS-91-10-1277
  19. Kawasaki, T., S. Nagata, A. Fujiwara, H. Satsuma, M. Fujie, S. Usami, and T. Yamada. 2007. Genomic characterization of the filamentous integrative bacgeriophage ${\Phi}RSS1$ and ${\Phi}RSM1$, which infect Ralstonia solanacearum. J. Bacteriol. 189: 5792-5802. https://doi.org/10.1128/JB.00540-07
  20. Kawasaki, T., M. Shimizu, H. Satsuma, A. Fujiwara, M. Fujie, S. Usami, and T. Yamada. 2009. Genomic characterization of Ralstonia solanacearum phage ${\Phi}RSB1$, a T7-like wide-hostrange phage. J. Bacteriol. 191: 422-427. https://doi.org/10.1128/JB.01263-08
  21. Keane, P. J., A. Kerr, and P. B. New. 1970. Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust. J. Biol. Sci. 23: 585-595.
  22. Kelman, A. 1954. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 44: 693-695.
  23. Kelman, A. 1956. Survival of Pseudomonas solanacearum in water. Phytopathology 46: 16-17.
  24. Kropinski, A. M. 2006. Phage therapy. Everything old is new again. Can. J. Infect Dis. Med. Microbiol. 17: 297-306.
  25. Murugaiyan, S., J. Y. Bae, J. Wu, S. D. Lee, H. Y. Um, H. K. Choi, et al. 2010. Characterization of filamentous bacteriophage PE226 infecting Ralstonia solanacearum strain. J. Appl. Microbiol. 110: 296-303.
  26. Park, E. J., S. D. Lee, E. J. Chung, M. H. Lee, H. Y. Um, S. Murugaiyan, et al. 2007. MicroTom - A model plant system to study bacterial wilt by Ralstonia solanacearum. Plant Pathol. J. 23: 239-244. https://doi.org/10.5423/PPJ.2007.23.4.239
  27. Roberts, P. D., T. P. Denny, and M. A. Schell. 1988. Cloning of the egl genes of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J. Bacteriol. 170: 1445-1451
  28. Rohwer, F. 2003. Global phage diversity. Cell 113: 141. https://doi.org/10.1016/S0092-8674(03)00276-9
  29. Romeo, A. M., L. Christen, E. G. Niles, and D. J. Kosman. 2001. Intracellular chelation of iron by bipyridyl inhibits DNA virus replication: Ribonucleotide reductase maturation as a probe of intracellular iron pools. J. Biol. Chem. 276: 24301-24308. https://doi.org/10.1074/jbc.M010806200
  30. Saddler, G. C. 2005. Management of bacterial wilt disease, pp. 121-132. In C. Allen, P. Prior, and A. C. Hayward (eds.). Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. APS Press, St. Paul.
  31. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York.
  32. Shin, J.-W. and S.-C. Yun. 2010. Elevated CO2 and temperature effects on the incidence of four major chili pepper diseases. Plant Pathol. J. 26: 178-184. https://doi.org/10.5423/PPJ.2010.26.2.178
  33. Svensson, U. and A. Christiansson. 1991. Methods for phage monitoring. FIL-IDF Bull. 263: 29-39.
  34. Tanaka, H., H. Negishi, and H. Maeda. 1990. Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum strain M4S and its bacteriophages. Ann. Phytopathol. Soc. Jpn. 56: 243-246. https://doi.org/10.3186/jjphytopath.56.243
  35. Toyoda, H., K. Kakutani, S. Ikeda, S. Goto, H. Tanaka, and S. Ouchi. 1991. Characterization of deoxyribonucleic acid of virulent bacteriophage and its infectivity to host bacteria, Pseudomonas solanacearum. J. Phytopathol. 131: 11-21. https://doi.org/10.1111/j.1439-0434.1991.tb04566.x
  36. Um, H. Y., E. Chung, J. H. Lee, and S. W. Lee. 2011. Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species. J. Microbiol. 49: 305-308. https://doi.org/10.1007/s12275-011-0439-0
  37. Van Elsas, J. D., P. Kastelein, P. M. de Vries, and L. S. van Overbeek. 2001. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Can. J. Microbiol. 47: 842-854.
  38. Yamada, T., T. Kawasaki, S. Nagata, A. Fujiwara, S. Usami, and M. Fujie. 2007. New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 153: 2630-2639. https://doi.org/10.1099/mic.0.2006/001453-0

Cited by

  1. Phage Therapy: Eco-Physiological Pharmacology vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/581639
  2. Phages in the global fruit and vegetable industry vol.118, pp.3, 2012, https://doi.org/10.1111/jam.12700
  3. Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit vol.26, pp.2, 2012, https://doi.org/10.4014/jmb.1509.09012
  4. Genetically Engineered Phages: a Review of Advances over the Last Decade vol.80, pp.3, 2012, https://doi.org/10.1128/mmbr.00069-15
  5. Isolation and Characterization of Bacteriophages Infecting Ralstonia solanacearum from Potato Fields vol.22, pp.4, 2012, https://doi.org/10.5423/rpd.2016.22.4.236
  6. Mechanisms of action of plant growth promoting bacteria vol.33, pp.11, 2012, https://doi.org/10.1007/s11274-017-2364-9
  7. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt vol.32, pp.6, 2012, https://doi.org/10.1007/s12250-017-3987-6
  8. Bacteriophages and Bacterial Plant Diseases vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.00034
  9. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture vol.8, pp.None, 2012, https://doi.org/10.3389/fpls.2017.01218
  10. Complete genome sequence of DU_RP_II, a novel Ralstonia solanacearum phage of the family Podoviridae vol.163, pp.1, 2012, https://doi.org/10.1007/s00705-017-3577-9
  11. Genomic characterization of the novel Ralstonia phage RPSC1 vol.163, pp.7, 2012, https://doi.org/10.1007/s00705-018-3713-1
  12. The impact of bacteriophages on phyllosphere bacterial abundance and composition vol.27, pp.8, 2012, https://doi.org/10.1111/mec.14542
  13. Biocontrol of the Major Plant Pathogen Ralstonia solanacearum in Irrigation Water and Host Plants by Novel Waterborne Lytic Bacteriophages vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.02813
  14. Identification and characterization of five new OP2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae vol.101, pp.2, 2012, https://doi.org/10.1007/s42161-018-0188-6
  15. Efficiency of Phage φ6 for Biocontrol of Pseudomonas syringae pv. syringae: An in Vitro Preliminary Study vol.7, pp.9, 2019, https://doi.org/10.3390/microorganisms7090286
  16. Diversity and Evolutionary Dynamics of Antiphage Defense Systems in Ralstonia solanacearum Species Complex vol.11, pp.None, 2012, https://doi.org/10.3389/fmicb.2020.00961
  17. Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments vol.104, pp.3, 2012, https://doi.org/10.1007/s00253-019-10301-7
  18. Combined Application of Bacteriophages and Carvacrol in the Control of Pseudomonas syringae pv. actinidiae Planktonic and Biofilm Forms vol.8, pp.6, 2012, https://doi.org/10.3390/microorganisms8060837
  19. Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants vol.36, pp.3, 2012, https://doi.org/10.5423/ppj.rw.04.2020.0074
  20. Bacteriophages as a Potential 360-Degree Pathogen Control Strategy vol.9, pp.2, 2012, https://doi.org/10.3390/microorganisms9020261
  21. Characterization of a Lytic Bacteriophage against Pseudomonas syringae pv. actinidiae and Its Endolysin vol.13, pp.4, 2021, https://doi.org/10.3390/v13040631
  22. Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future vol.9, pp.5, 2012, https://doi.org/10.3390/microorganisms9051056
  23. Bacteriophage liquid formulation: A potential green tool for the management of pomegranate bacterial blight vol.158, pp.None, 2012, https://doi.org/10.1016/j.biocontrol.2021.104597
  24. Phages in Food Industry Biocontrol and Bioremediation vol.10, pp.7, 2021, https://doi.org/10.3390/antibiotics10070786
  25. Preclinical Development of a Bacteriophage Cocktail for Treating Multidrug Resistant Pseudomonas aeruginosa Infections vol.9, pp.9, 2021, https://doi.org/10.3390/microorganisms9092001
  26. Isolation and Characterization of Novel Phages Targeting Xanthomonas oryzae: Culprit of Bacterial Leaf Blight Disease in Rice vol.2, pp.3, 2012, https://doi.org/10.1089/phage.2021.0009
  27. Isolation of the Novel Phage PHB09 and Its Potential Use against the Plant Pathogen Pseudomonas syringae pv. actinidiae vol.13, pp.11, 2012, https://doi.org/10.3390/v13112275
  28. Phages as a potential biocontrol of phytobacteria vol.54, pp.17, 2012, https://doi.org/10.1080/03235408.2021.1902033
  29. Biocontrol potential of bacteriophage ɸsp1 against bacterial wilt-causing Ralstonia solanacearum in Solanaceae crops vol.31, pp.1, 2012, https://doi.org/10.1186/s41938-021-00408-3