DOI QR코드

DOI QR Code

Physiological and Molecular Characterization of a Newly Identified Entomopathogenic Bacteria, Photorhabdus temperata M1021

  • Jang, Eun-Kyung (School of Applied Biosciences, Kyungpook National University) ;
  • Ullah, Ihsan (School of Applied Biosciences, Kyungpook National University) ;
  • Lim, Jong-Hui (School of Applied Biosciences, Kyungpook National University) ;
  • Lee, In-Jung (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Jong-Guk (Department of Life Sciences and Biotechnology, College of National Sciences, Kyungpook National University) ;
  • Shin, Jae-Ho (School of Applied Biosciences, Kyungpook National University)
  • Received : 2012.03.29
  • Accepted : 2012.07.26
  • Published : 2012.12.28

Abstract

The present study concerned the identification and characterization of a novel bacterial strain isolated from entomopathogenic nematodes collected from different regions in Korea. The bacterial isolate M1021 was Gramnegative, bioluminescent, and produced red colonies on MacConkey agar medium. A rod-shaped structure was confirmed by the electron micrograph. Fatty acid composition was analyzed by using the Sherlock MIDI system. The identification was further supported by 16S rDNA sequence analysis, which revealed 96-99% sequence homology with strains of Photorhabdus temperata. The location of the isolated strain of P. temperata in the phylogenetic tree was confirmed and it was named P. temperata M1021. P. temperata M1021 exhibited catalase, protease, and lipase activities when grown on appropriate media supplemented with respective substrates. The culture of P. temperata M1021 exhibited insecticidal activity against the larvae of Galleria mellonella and the activity was the highest after 3-4 days of cultivation with agitating at $28^{\circ}C$ under 220 rpm. Antibacterial activity was also observed against Salmonella Typhimurium KCTC 1926 and Micrococcus luteus KACC 10488.

Keywords

References

  1. Akhurst, R. J. 1982. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J. Gen. Microbiol. 128: 3061-3065.
  2. Akhurst, R. J. and N. E. Boemare. 1988. A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. J. Gen. Microbiol. 134: 1835-1845.
  3. Akhurst, R. J., R. G. Mourant, L. Baud, and N. E. Boemare. 1996. Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus (Enterobacteriaceae). Int. J. Syst. Bacteriol. 46: 1034-1041. https://doi.org/10.1099/00207713-46-4-1034
  4. An, R. and P. Grewal. 2010. Photorhabdus temperata subsp. stackebrandtii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr. Microbiol. 61: 291-297. https://doi.org/10.1007/s00284-010-9610-9
  5. An, R. and P. S. Grewal. 2011. purL Gene expression affects biofilm formation and symbiotic persistence of Photorhabdus temperata in the nematode Heterorhabditis bacteriophora. Microbiology 157: 2595-2603. https://doi.org/10.1099/mic.0.048959-0
  6. Babic, I., M. Fischer-Le Saux, E. Giraud, and N. Boemare. 2000. Occurrence of natural dixenic associations between the symbiont Photorhabdus luminescens and bacteria related to Ochrobactrum spp. in tropical entomopathogenic Heterorhabditis spp. (nematoda, rhabditida). Microbiology 146: 709-718.
  7. Boemare, N. E., R. J. Akhurst, and R. G. Mourant. 1993. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int. J. Syst. Bacteriol. 43: 249-255. https://doi.org/10.1099/00207713-43-2-249
  8. Budsberg, K. J., C. F. Wimpee, and J. F. Braddock. 2003. Isolation and identification of Photobacterium phosphoreum from an unexpected niche: Migrating salmon. Appl. Environ. Microbiol. 69: 6938-6942. https://doi.org/10.1128/AEM.69.11.6938-6942.2003
  9. Campos-Herrera, R., P. Tailliez, S. Pages, N. Ginibre, C. Gutierrez, and N. E. Boemare. 2009. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). J. Invertebr. Pathol. 102: 173-181. https://doi.org/10.1016/j.jip.2009.08.007
  10. Derzelle, S., E. Duchaud, F. Kunst, A. Danchin, and P. Bertin. 2002. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl. Environ. Microbiol. 68: 3780-3789. https://doi.org/10.1128/AEM.68.8.3780-3789.2002
  11. Ehlers, R.-U. and I. Niemann. 1998. Molecular identification of Photorhabdus luminescens strains by amplification of specific fragments of the 16S ribosomal DNA. Syst. Appl. Microbiol. 21: 509-519. https://doi.org/10.1016/S0723-2020(98)80063-5
  12. Fischer-Le Saux, M., V. Viallard, B. Brunel, P. Normand, and N. E. Boemare. 1999. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int. J. Syst. Evol. Microbiol. 49: 1645-1656.
  13. Fodor, E., E. Szallas, Z. Kiss, A. Fodor, L. I. Horvath, D. J. Chitwood, and T. Farkas. 1997. Composition and biophysical properties of lipids in Xenorhabdus nematophilus and Photorhabdus luminescens, symbiotic bacteria associated with entomopathogenic nematodes. Appl. Environ. Microbiol. 63: 2826-2831.
  14. Gaudriault, S., E. Duchaud, A. Lanois, A.-S. Canoy, S. Bourot, R. DeRose, et al. 2006. Whole-genome comparison between Photorhabdus strains to identify genomic regions involved in the specificity of nematode interaction. J. Bacteriol. 188: 809-814. https://doi.org/10.1128/JB.188.2.809-814.2006
  15. Gerrard, J. G., S. McNevin, D. Alfredson, R. Forgan-Smith, and N. Fraser. 2003. Photorhabdus species: Bioluminescent bacteria as emerging human pathogens? Emerg. Infect. Dis. 9: 251-254. https://doi.org/10.3201/eid0902.020222
  16. Hsieh, F.-C., C.-Y. Tzeng, J.-T. Tseng, Y.-S. Tsai, M. Meng, and S.-S. Kao. 2009. Isolation and characterization of the native entomopathogenic nematode, Heterorhabditis brevicaudis, and its symbiotic bacteria from Taiwan. Curr. Microbiol. 58: 564-570. https://doi.org/10.1007/s00284-009-9371-5
  17. Hu, K. and J. M. Webster. 2000. Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus-heterorhabditis infected Galleria mellonella larvae. FEMS Microbiol. Lett. 189: 219-223.
  18. Jallouli, W., W. Hammami, N. Zouari, and S. Jaoua. 2008. Medium optimization for biomass production and morphology variance overcome of Photorhabdus temperata ssp. temperata strain K122. Proc. Biochem. 43: 1338-1344. https://doi.org/10.1016/j.procbio.2008.08.002
  19. Jallouli, W., N. Zouari, and S. Jaoua. 2010. Involvement of oxidative stress and growth at high cell density in the viable but nonculturable state of Photorhabdus temperata ssp. temperata strain K122. Proc. Biochem. 45: 706-713.
  20. Kang, S., S. Han, and Y. Kim. 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337. https://doi.org/10.1016/S1226-8615(08)60235-6
  21. Kontnik, R., J. M. Crawford, and J. Clardy. 2010. Exploiting a global regulator for small molecule discovery in Photorhabdus luminescens. ACS Chem. Biol. 5: 659-665. https://doi.org/10.1021/cb100117k
  22. Lanois, A., S. Pages, S. Bourot, A.-S. Canoy, A. Givaudan, and S. Gaudriault. 2011. Transcriptional analysis of a Photorhabdus sp. variant reveals transcriptional control of phenotypic variation and multifactorial pathogenicity in insects. Appl. Environ. Microbiol. 77: 1009-1020. https://doi.org/10.1128/AEM.01696-10
  23. Maneesakorn, P., R. An, H. Daneshvar, K. Taylor, X. Bai, B. J. Adams, et al. 2011. Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae). Molec. Phylogen. Evol. 59: 271-280. https://doi.org/10.1016/j.ympev.2011.02.012
  24. Noujeim, E., C. Khater, S. Pages, J.-C. Ogier, P. Tailliez, M. Hamze, and O. Thaler. 2011. The first record of entomopathogenic nematodes (Rhabiditiae: Steinernematidae and Heterorhabditidae) in natural ecosystems in Lebanon: A biogeographic approach in the Mediterranean region. J. Invertebr. Pathol. 107: 82-85. https://doi.org/10.1016/j.jip.2011.01.004
  25. Oberg, T. S., R. E. Ward, J. L. Steele, and J. R. Broadbent. 2012. Identification of plasmalogens in the cytoplasmic membrane of Bifidobacterium animalis subsp. lactis. Appl. Environ. Microbiol. 78: 880-884. https://doi.org/10.1128/AEM.06968-11
  26. Peat, S. M., R. H. French-Constant, N. R. Waterfield, J. Marokházi, A. Fodor, and B. J. Adams. 2010. A robust phylogenetic framework for the bacterial genus Photorhabdus and its use in studying the evolution and maintenance of bioluminescence: A case for 16S, gyrB, and glnA. Molec. Phylogen. Evol. 57: 728-740. https://doi.org/10.1016/j.ympev.2010.08.012
  27. Peel, M. M., D. A. Alfredson, J. G. Gerrard, J. M. Davis, J. M. Robson, R. J. McDougall, et al. 1999. Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. J. Clin. Microbiol. 37: 3647-3653.
  28. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molec. Biol. Evol. 4: 406-425.
  29. Somvanshi, V. S., E. Lang, S. Ganguly, J. Swiderski, A. K. Saxena, and E. Stackebrandt. 2006. A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000. Syst. Appl. Microbiol. 29: 519-525. https://doi.org/10.1016/j.syapm.2006.01.004
  30. Tóth, T. and T. Lakatos. 2008. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int. J. Syst. Evol. Microbiol. 58: 2579-2581. https://doi.org/10.1099/ijs.0.2008/000273-0
  31. Tailliez, P., C. Laroui, N. Ginibre, A. Paule, S. Pagès, and N. Boemare. 2010. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int. J. Syst. Evol. Microbiol. 60: 1921-1937. https://doi.org/10.1099/ijs.0.014308-0
  32. van der Wilk, F., A. M. Dullemans, M. Verbeek, and J. F. J. M. van den Heuvel. 1999. Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acyrthosiphon pisum. Virology 262: 104-113. https://doi.org/10.1006/viro.1999.9902
  33. Volgyi, A., A. Fodor, and S. Forst. 2000. Inactivation of a novel gene produces a phenotypic variant cell and affects the symbiotic behavior of Xenorhabdus nematophilus. Appl. Environ. Microbiol. 66: 1622-1628. https://doi.org/10.1128/AEM.66.4.1622-1628.2000
  34. Yoo, S. K., I. Brown, and R. Gaugler. 2000. Liquid media development for Heterorhabditis bacteriophora: Lipid source and concentration. Appl. Microbiol. Biotechnol. 54: 759-763. https://doi.org/10.1007/s002530000478

Cited by

  1. Draft Genome Sequence of Entomopathogenic Bacterium Photorhabdus temperata Strain M1021, Isolated from Nematodes vol.1, pp.5, 2012, https://doi.org/10.1128/genomea.00747-13
  2. Gibberellins synthesized by the entomopathogenic bacterium, Photorhabdus temperata M1021 as one of the factors of rice plant growth promotion vol.9, pp.1, 2012, https://doi.org/10.1080/17429145.2014.942956
  3. An Insecticidal Compound Produced by an Insect-Pathogenic Bacterium Suppresses Host Defenses through Phenoloxidase Inhibition vol.19, pp.12, 2014, https://doi.org/10.3390/molecules191220913
  4. Screening of the Antimicrobial Activity against Drug Resistant Bacteria of Photorhabdus and Xenorhabdus Associated with Entomopathogenic Nematodes from Mae Wong National Park, Thailand vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01142
  5. Exploring the Role of Relish on Antimicrobial Peptide Expressions (AMPs) Upon Nematode-Bacteria Complex Challenge in the Nipa Palm Hispid Beetle, Octodonta nipae Maulik (Coleoptera: Chrysomelidae) vol.10, pp.None, 2012, https://doi.org/10.3389/fmicb.2019.02466
  6. Exploring the Insect Control and Plant Growth Promotion Potentials of Endophytes Isolated From Calotropis procera Present in Jeddah KSA vol.15, pp.3, 2012, https://doi.org/10.1177/1934578x20912869